
Results of SEI
Independent Research
and Development
Projects and Report on
Emerging Technologies
and Technology Trends

Sagar Chaki
Rosann W. Collins
Peter Feiler
John Goodenough
Aaron Greenhouse
Jorgen Hansson
Alan R. Hevner
John Hudak
Angel Jordan
Rick Kazman
Richard C. Linger
Mark G. Pleszkoch
Stacy J. Prowell
Natasha Sharygina
Kurt C. Wallnau
Gwen Walton
Chuck Weinstock
Lutz Wrage

December 2005

TECHNICAL REPORT
CMU/SEI-2005-TR-020
ESC-TR-2005-020

Pittsburgh, PA 15213-3890

Results of SEI Independent
Research and Development
Projects and Report on
Emerging Technologies and
Technology Trends

CMU/SEI-2005-TR-020
ESC-TR-2005-020

Sagar Chaki
Rosann W. Collins
Peter Feiler
John Goodenough
Aaron Greenhouse
Jorgen Hansson
Alan R. Hevner
John Hudak
Angel Jordan
Rick Kazman
Richard C. Linger
Mark G. Pleszkoch
Stacy J. Prowell
Natasha Sharygina
Kurt Wallnau
Gwen Walton
Chuck Weinstock
Lutz Wrage

December 2005

SEI Director’s Office

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Abstract... ix

Introduction ... 1
1.1 Purpose of the SEI Independent Research and Development Program 1
1.2 Overview of IR&D Projects ... 2
1.3 Purpose of Technology Scouting .. 2

2 Architecture-Based Self-Adapting Systems... 3
2.1 Purpose .. 3
2.2 Background... 4
2.3 Approach .. 5
2.4 Collaborations... 6
2.5 Evaluation Criteria .. 6
2.6 Results.. 7
2.7 Publications and Presentations .. 7

2.7.1 Publications... 7
2.7.2 External presentations: ... 8
2.7.3 References.. 8

3 The Impact of Architecture Concurrency on Performance Engineering ... 11
3.1 Purpose .. 11
3.2 Background... 12
3.3 Approach .. 13
3.4 Collaborators .. 13
3.5 Evaluation Criteria .. 14
3.6 Results.. 14
3.7 Course and Publications... 16
3.8 References ... 16

4 The Impact of Function Extraction Technology on Next-Generation
Software Engineering ... 19
4.1 Purpose .. 19
4.2 Background... 20

CMU/SEI-2005-TR-020 i

4.2.1 The Idea of Function Extraction.. 20
4.2.2 Fundamentals of Program Behavior Calculation 22

4.3 Approach .. 23
4.4 Collaborations .. 25
4.5 Evaluation Criteria .. 25
4.6 Results.. 25
4.7 References ... 27

5 Issues in Scalability.. 31
5.1 Purpose .. 31
5.2 Background .. 32
5.3 Approach .. 32
5.4 Collaborations .. 33
5.5 Evaluation Criteria .. 33
5.6 Results.. 33

5.6.1 What is Scalability?... 34
5.6.2 Achieving Scalability Involves Making Tradeoffs 35

5.7 Conclusion.. 35
5.8 References ... 36

6 Proof-Carrying Code .. 37
6.1 Purpose .. 37
6.2 Background .. 38
6.3 Approach .. 38
6.4 Collaborations .. 38
6.5 Evaluation Criteria .. 39
6.6 Results.. 39

6.6.1 Survey of the State of the Research... 39
6.6.2 Prototype Certifying Model Checker ... 42
6.6.3 Separation Logic for Predicate Abstraction 43

6.7 References ... 44

7 Verification of Evolving Software via Component Substitutability
Analysis ... 47
7.1 Introduction... 47
7.2 Model Checking.. 49
7.3 The Process of Model Checking... 50
7.4 Current Research in Software Model Checking 50

7.4.1 Compositional Reasoning... 51
7.4.2 Abstraction.. 52

ii CMU/SEI-2005-TR-020

7.4.3 Counterexample-Guided Abstraction Refinement (CEGAR) 52
7.5 Verification of Evolving Software .. 54
7.6 Implementation and Experimental Evaluation .. 55
7.7 Related Work .. 56
7.8 Conclusion.. 57
7.9 References ... 57

8 Emerging Technologies and Technology Trends .. 63
8.1 Introduction... 63

8.1.1 Reducing Software Defects to Improve Security 64
8.1.2 Organization of this Report ... 65

8.2 Technology Scouting of Work at Carnegie Mellon University and Other
Institutions Worldwide Relevant to SEI... 66

U

8.2.1 Advances in Software Architecture ... 67
8.2.2 Aspect-Oriented Programming (AOP) and Aspect-Oriented

Software Development (AOSD) .. 72
8.2.3 Autonomic Application Software ... 74
8.2.4 Verification of Autonomous Systems .. 75
8.2.5 Proof-Carrying Code ... 77
8.2.6 The ConCert Project ... 77
8.2.7 The Fox Project... 78
8.2.8 Building Certifiably Dependable Software Systems...................... 78

8.3 Technology Scouting in Systems and Software Engineering.................... 79
8.3.1 Introduction ... 79
8.3.2 2005 Software Process Workshop.. 86
8.3.3 Agile Software Development... 96
8.3.4 International Conferences in Software Engineering...................... 99
8.3.5 Recipients and Title of Most Influential Paper............................... 99

CMU/SEI-2005-TR-020 iii

iv CMU/SEI-2005-TR-020

List of Figures

Figure 2-1: The DiscoTect System .. 5

Figure 4-1: The Basic Concept of Function Extraction.. 22

Figure 6-1: Archetypal Proof-Carrying Code ... 40

Figure 7-1: A Small Program with Two Threads of Control 48

Figure 7-2: The CEGAR Framework... 53

Figure 7-3: Comparison of Times Required for Original Verification (Torig) and
Verification on Upgrade (Tug) by DynamicCheck.................................... 55 U

CMU/SEI-2005-TR-020 v

vi CMU/SEI-2005-TR-020

List of Tables

Table 4-1: Creation and Loss of Semantic Information in Software Development .. 21

Table 4-2: FX Impacts—Where to Next?... 24

Table 6-1: Comparison of Proof Certificate Size SAT vs. Conventional Theorem
Provers ... 43

CMU/SEI-2005-TR-020 vii

viii CMU/SEI-2005-TR-020

Abstract

Each year, the Software Engineering Institute (SEI) undertakes several Independent Research
and Development (IR&D) projects. These projects serve to (1) support feasibility studies in-
vestigating whether further work by the SEI would be of potential benefit, and (2) support
further exploratory work to determine whether there is sufficient value in eventually funding
the feasibility study work as an SEI initiative. Projects are chosen based on their potential to
mature and/or transition software engineering practices, develop information that will help in
deciding whether further work is worth funding, and set new directions for SEI work. This
report describes the IR&D projects that were conducted during fiscal year 2005 (October
2004 through September 2005). In addition, this report provides information on what the SEI
has learned in its role as a technology scout for developments over the past year in the field
of software engineering.

CMU/SEI-2005-TR-020 ix

x CMU/SEI-2005-TR-020

1 Introduction

This document briefly describes the results of the independent research and development pro-
jects conducted at the Carnegie Mellon Software Engineering Institute (SEI) during the
2004�05 fiscal year. It also provides information about what the SEI has learned in its role as
a technology scout for developments over the past year in the field of software engineering.

1.1 Purpose of the SEI Independent Research and
Development Program

SEI independent research and development (IR&D) funds are used in two ways: (1) to sup-
port feasibility studies investigating whether further work by the SEI would be of potential
benefit and (2) to support further exploratory work to determine if there is sufficient value in
eventually funding the feasibility study work as an SEI initiative. It is anticipated that each
year there will be three or four feasibility studies and that one or two of these studies will be
further funded to lay the foundation for the work possibly becoming an initiative.

Feasibility studies are evaluated against the following criteria:

• Mission criticality: To what extent is there a potentially dramatic increase in maturing
and/or transitioning software engineering practices if work on the proposed topic yields
positive results? What will the impact be on the Department of Defense (DoD)?

• Sufficiency of study results: To what extent will information developed by the study help
in deciding whether further work is worth funding?

• New directions: To what extent does the work set new directions as contrasted with
building on current work? Ideally, the SEI seeks a mix of studies that build on current
work and studies that set new directions.

At a DoD meeting in November 2001, the SEI�s DoD sponsor approved a set of thrust areas
and challenge problems to provide long-range guidance for the SEI research and develop-
ment program, including its IR&D program. The thrust areas are survivability/security, inter-
operability, sustainability, software R&D, metrics for acquisition, acquisition management,
and commercial off-the-shelf products. The IR&D projects conducted in FY2005 were based
on these thrust areas and challenge problems.

CMU/SEI-2005-TR-020 1

1.2 Overview of IR&D Projects
The following research projects were undertaken in FY2005:

• Architecture-based Self Adapting Systems

• Assessing and Demonstrating the Readiness of Proof Carrying Code for Obtaining Ob-
jective Trust in Software Components

• A Feasibility Study of Automated Program Behavior Computation for Next-Generation
Software Engineering

• Impact of Architecture Concurrency on Performance Engineering

• Software Scalability

• Verification of Evolving Software via Component Substitutability Analysis

These projects are described in detail in this technical report.

1.3 Purpose of Technology Scouting
Technology scouting has always been an implicit activity of the Software Engineering Insti-
tute and is embedded in the SEI�s mission of technology transition. Because of the institute�s
small size relative to other research institutions, the SEI applies the most leverage to its active
initiatives, but it also watches for other emerging technologies, in the U.S. and internation-
ally. The SEI has been asked to report on the state of the art of software technologies�those
that are pushing the frontiers of the SEI�s current programs and initiatives and also those that
transcend them.

2 CMU/SEI-2005-TR-020

2 Architecture-Based Self-Adapting
Systems
Rick Kazman

2.1 Purpose
A well-defined software architecture is critical for the success of complex software systems.
Such a definition provides a high-level view of a system in terms of its principal runtime
components (e.g., clients, servers, databases), their interactions (e.g., remote procedure call,
event multicast, piped streams), and their properties (e.g., throughputs, latencies, reliabil-
ities). As an abstract representation of a system, an architecture permits many forms of high-
level inspection and analysis, allowing the architect to determine if a system�s design will
satisfy its critical quality attributes. Consequently, over the past decade, considerable research
and development has gone into the development of notations, tools, and methods to support
architectural design. However, despite considerable progress in developing an engineering
basis for software architecture, a persisting difficult problem is determining whether a system
as implemented has the architecture as designed. Without some form of consistency guaran-
tees, the validity of any architectural analysis will be suspect, at best, and completely errone-
ous, at worst.

In addition, an increasingly important requirement for software-based systems is the ability to
adapt themselves at runtime to handle such things as changing resources, changing user needs
and demands, and system faults. In the past, systems that supported such self-repair were
rare, confined mostly to domains like telecommunications switches or deep space control
software, where taking a system down for upgrades was not an option, and where human in-
tervention was not always feasible. However, today more and more systems have this re-
quirement, including e-commerce systems and mobile embedded systems.

For systems to benefit from having a well-defined software architecture, there must be a way
of ensuring that the implementation conforms to its architecture. And for systems to adapt
themselves at runtime, one of the essential ingredients is self-reflection: a system must know
its architecture, its current level of various quality attributes (such as performance, security,
availability, and usability), and it must be able to identify opportunities for improving its own
quality attribute behavior by changing its properties or even changing its structure. In this
work we have built upon the successes of our initial SEI-funded exploratory study (con-
ducted during fiscal year 2004) by showing how we can use software architecture descrip-
tions discovered at runtime as a basis for system validation, system reflection, and self-

CMU/SEI-2005-TR-020 3

adaptation. This work extends the DiscoTect framework [Yan 04a, 04b] to extract quality at-
tribute information from running systems, and to reason about this information.

Traditionally software systems have operated in relatively stable, fixed environments (such as
a desktop), and could be taken down for maintenance, upgrading, or replacement. However,
increasingly software systems must function in environments where resources (such as
bandwidth or power) change rapidly, where their resource demands are difficult to predict in
advance, and where they must interact with potentially faulty components, services, and
threats not under their control. Despite this, such systems must operate continuously and pro-
vide the highest quality of service possible. Thus such systems must take responsibility for
their own health and welfare, adapting at runtime to handle threats, errors, changing re-
sources, and varying user needs.

Software engineers currently have few tools or techniques at their disposal to create such
self-adaptive systems reliably, flexibly, and at low cost. Most existing techniques rely on low-
level mechanisms, such as exceptions and timeouts. But these generally provide little help in
allowing a system to determine the true source of problems, or in deciding what to do about
them. Moreover, they are ineffective at dealing with softer problems, such as gradual per-
formance degradation, or for recognizing opportunities to improve behavior even when
things are not broken.

2.2 Background
Our work is mostly related to other approaches for dynamic analysis of a system. A number
of techniques and tools have been developed to extract information from a running system.
These include instrumenting the source code to produce trace information and manipulating
runtime artifacts to get the information (e.g., as described by Balzer and Goldman [Balzer 99]
and Wells and Pazandak [Wells 01]). There are many technologies available for monitoring
systems, and we build on those. However, they do not by themselves solve the hard problem
of mapping from code to more abstract models. In previous work, we developed an infra-
structure for doing certain kinds of abstraction [Garlan03]. However, this approach was lim-
ited to observing properties of a system and reflecting them in a pre-constructed architectural
model. In this work, we show how to create that model.

The work by Dias and Richardson [Dias 03] uses an extensible markup language (XML)-
based language to describe runtime events and use patterns to map these events into high-
level events. Analyzing these events to determine architectural structure is not addressed. In
addition, a simple static mapping from low-level system events to high-level events has lim-
ited expressiveness. For example, it cannot handle the case where the event analyzer initially
has an interest in one set of events, but then changes its interest after the initial events have
occurred. Also it doesn�t provide a way of specifying event correlations or mapping a series
of correlated low-level events to a single high-level event�a crucial capability needed when
discovering the architecture of a system. Kaiser and colleagues use a collection of temporal

4 CMU/SEI-2005-TR-020

state machines to perform pattern matching against runtime events [Kaiser 03]. Our approach
is similar, but it makes architectural styles or patterns explicit.

A number of researchers have investigated the problem of presenting dynamic information to
an observer. For example, some researchers present information about variables, threads, ac-
tivations, object interactions, and so forth [Reiss 03, Walker 00, and Zeller 01]. Ernst and col-
leagues show how to dynamically detect program invariants by examining values computed
during a program execution and by looking for patterns and relationships among them [Ernst
01]. This is somewhat different from detecting architectural structure.

Madhav [Madhav 96] describes a system that allows Ada 95 programs to be monitored dy-
namically to check conformance to a Rapide architectural specification [Luckham96]. His
approach requires the source code to be annotated so that it can be transformed to produce
events to construct the architecture. In contrast, our approach does not require access to the
source code, and it does not rely on explicit architectural construction directives to be em-
bedded in the code as does the approach used by Aldrich and colleagues [Aldrich 02].

2.3 Approach
We are furthering our exploration into a new paradigm for software systems that promises to
solve this problem. The underlying idea is to associate with each software system a reflective
model that allows a system to reason about its own quality attribute behavior at runtime, and
take action to modify its own structure and behavior when necessary [Garlan 03]. Specifi-
cally, we are using architectural models for this purpose. By reflecting the current state of a
system as an architectural model that exposes only the main components, interactions, and
their high-level properties, a system can much more easily understand what its current state is
and take necessary actions.

Running System

Trace Engine

State
Engine

Architecture
Builder

Model

Figure 2-1: The DiscoTect System

CMU/SEI-2005-TR-020 5

A critical step toward achieving this vision is the ability to know exactly what the architec-
ture of a running system is. In our initial study we made great strides toward solving this
problem, creating the DiscoTect Architecture, as shown in Figure 2-1. Using DiscoTect we
are able to: observe a system�s runtime behavior, interpret that runtime behavior in terms of
architecturally meaningful events, and represent the resulting architecture. DiscoTect has
proven itself capable of extracting the architectures of systems written in Java and C/C++,
and includes a wide variety of built-in architectural styles [Yan 04b]. But several obstacles
must still be overcome before we can turn this promising foundation into a usable, efficient
tool for software engineers. This exploratory study was aimed at maturing DiscoTect, provid-
ing a stronger foundation for it, and linking the results of architectural extraction to quality
attribute models.

2.4 Collaborations
Collaborators on this project include the following:

SEI:

• Rick Kazman

• William O�Brien

External:

• David Garlan (Carnegie Mellon University/Institute for Software Research International
[ISRI] faculty)

• Jonathan Aldrich (Carnegie Mellon/ISRI faculty)

• Bradley Schmerl (Carnegie Mellon/ISRI system scientist)

• Hong Yan (Carnegie Mellon/Computer Science third-year PhD student)

• Owen Chang (Carnegie Mellon/Computer Science fourth-year PhD student)

2.5 Evaluation Criteria
We set forth the following evaluation criteria in our original proposal:

• At least one government and one commercial organization will work with us to have their
systems analyzed.

• At least one journal or conference paper will be published on this research.

• At least one technical report will be published on this approach.

• Clear guidance on the feasibility of the approach for future SEI investment and involve-
ment will be written.

6 CMU/SEI-2005-TR-020

2.6 Results
We have made significant strides in maturing DiscoTect in the past year:

• We have formalized the underlying language that expresses the mapping from extracted
low-level �tracing� events to architecturally significant events.

• We have created a formal model for the state machine underlying DiscoTect, using Col-
ored Petri Nets.

• We have improved the usability of DiscoTect, so that it can be more easily transferred to
practicing software engineers. In particular we have made the DiscoSTEP language more
regular, and we have enhanced the layout of the resulting reverse-engineered architecture,
using yFiles, a commercial graph-layout package.

• We have made DiscoTect more robust and made it easier to integrate with other software
tools. DiscoTect now uses JMS (Java Message Service) to communicate with other tools.
DiscoTect gets implementation events from JMS and outputs architecture events to JMS.

• Using this infrastructure we have integrated DiscoTect with other tools, such as
AcmeStudio, so that we can interact with the results, visualize the results, and run off-line
analyses.

• We have improved the performance of DiscoTect. In particular we have optimized the
event-processing algorithms.

• Finally, we have completed three case studies, one of which was on a commercial sys-
tem:
− pipe and filter system (student project)
− adaptive architecture for mobile simulation (research system)
− JBoss/J2EE (commercial system). Our analysis found a substantial architectural de-

viation in Sun�s implementation of the Duke�s Bank system in J2EE.

2.7 Publications and Presentations

2.7.1 Publications
• �Discovering Architectures from Running Systems Uusing Colored Petri Nets.� Bradley

Schmerl, Jonathan Aldrich, David Garlan, Rick Kazman, and Hong Yan. Transactions on
Software Engineering. Submitted for publication, 2005.

• �DiscoTect: A System for Discovering Architectures from Running Systems (Demonstra-
tion).� Bradley Schmerl, Hong Yan, and David Garlan. The 2005 Joint European Soft-
ware Engineering Conference and ACM SigSoft Symposium on the Foundations of Soft-
ware Engineering, Lisbon, Portugal, September 2005.

• Discovering Architectures from Running Systems: Lessons Learned. Hong Yan, Jonathan
Aldrich, David Garlan, Rick Kazman, and Bradley Schmerl. Software Engineering Insti-
tute Technical Report, CMU-SEI-2004-TR-016, 2004.

CMU/SEI-2005-TR-020 7

• �DiscoTect: A System for Discovering Architectures from Running Systems.� Hong Yan,
David Garlan, Bradley Schmerl, Jonathan Aldrich, and Rick Kazman, Proceedings of the
26th International Conference on Software Engineering, Edinburgh, Scotland, May 2004.

2.7.2 External presentations:
• Research demonstration at Joint 2005 ACM SIGSOFT Foundations of Software Engi-

neering and European Software Engineering Conferences, Lisbon, Portugal, September
2005.

2.7.3 References

URLs are valid as of the publication date of this document.

[Aldrich 02] Aldrich, J.; Chambers, C.; & Notkin, D. �ArchJava: Connecting
Software Architecture to Implementation.� Proceedings of the 24th
International Conference on Software Engineering. 2002.

[Balzer 99] Balzer, R.M. & Goldman, N.M. �Mediating Connectors.� Proceed-
ings of 19th IEEE International Conference on Distributed Comput-
ing Systems Workshop on Electronic Commerce and Web-Based
Applications. Austin, TX, 1999.

[Dias 03] Dias, M. & Richardson, D. �The Role of Event Description on Ar-
chitecting Dependable Systems (extended version from WADS).�
Lecture Notes in Computer Science: Book on Architecting Depend-
able Systems (Springer-Verlag), 2003.

[Ernst 01] Ernst, M.D.; Cockrell, J.; Griswold, W.G.; & Notkin, D. �Dynami-
cally Discovering Likely Program Invariants to Support Program
Evolution.� IEEE Transactions on Software Engineering, 27(2),
2001.

[Garlan 03] Garlan, D.; Cheng, S-W; & Schmerl, B. �Increasing System De-
pendability Through Architecture-Based Self-Repair.� Architecting
Dependable Systems, R. de Lemos, C. Gacek, A. Romanovsky
(eds.). Springer-Verlag, 2003.

[Kaiser 03] Kaiser, G.; Parekh, J.; Gross, P.; & Veletto, G. �Kinesthetics eX-
treme: An External Infrastructure for Monitoring Distributed Leg-
acy Systems.� Proceedings of Fifth International Active Middle-
ware Workshop. 2003.

8 CMU/SEI-2005-TR-020

[Madhav 96] Madhav, N. �Testing Ada 95 Programs for Conformance to Rapide
Architectures.� Proceedings of Reliable Software Technologies—
Ada Europe 96, 1996.

[Reiss 03] Reiss, S. �JIVE: Visualizing Java in Action (Demonstration De-
scription).� Proceedings of 25th International Conference on Soft-
ware Engineering, 2003.

[Walker 00] Walker, R.J.; Murphy, G.C.; Steinbok, J.; & Robillard, M.P. �Effi-
cient Mapping of Software System Traces to Architectural Views.�
Proceedings of CASCON 2000, S.A. MacKay and J.H. Johnson
(eds.).

[Wells 01] Wells, D. & Pazandak, P. �Taming Cyber Incognito: Surveying Dy-
namic/Reconfigurable Software Landscapes.� Proceedings of First
Working Conference on Complex and Dynamic Systems Architec-
tures, 2001.

[Yan 04a] Yan, H.; Garlan, D.; Schmerl, B.; Aldrich, J.; & Kazman, R. �Dis-
coTect: A System for Discovering Architectures from Running Sys-
tems.� Proceedings of the 26th International Conference on Soft-
ware Engineering (ICSE 26), (Edinburgh, Scotland), May 2004,
470-479.

[Yan 04b] Yan, H.; Aldrich, J.; Garlan, D.; Kazman, R.; & Schmerl, B. Dis-
covering Architectures from Running Systems: Lessons Learned
(CMU/SEI-2004-TR-016). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2004.

[Zeller 01] Zeller, A. �Animating Data Structures in DDD.� Proceedings of
SIGCSE/SIGCUE Program Visualization Workshop, 2000.

CMU/SEI-2005-TR-020 9

10 CMU/SEI-2005-TR-020

3 The Impact of Architecture Concurrency
on Performance Engineering
Peter Feiler, Aaron Greenhouse, Jorgen Hansson, John Hudak,
Lutz Wrage

3.1 Purpose
Concurrency is key to the performance of many embedded and mission-critical systems.
Control systems must process sensor data from many sources and drive the control of a
physical system through many actuators. Mission-critical systems must process information
from many data sources, maintain a global situational image, and provide individual re-
sponses in a timely manner. When such systems require improved performance�in areas
such as throughput and response time, for example�an increase in computational resources
does not always result in the desired performance gain. The reason is that system architec-
tures and their components have an inherent degree of concurrency that places constraints on
performance gains. When analyzing the performance of such systems it is therefore essential
to understand their architectural concurrency limitations, and to understand how to overcome
them if the performance requirements are not met. This requires performance modeling tools
to predict performance and capabilities to generate such performance models from architec-
ture descriptions, as well as an understanding of concurrency constraints imposed by specific
system architectures and how to overcome them.

The purpose of this project is to investigate the feasibility of characterizing the degree of
concurrency in different system architectures and to predict the impact of such concurrency
constraints on system performance, in particular on system latency and throughput. An un-
derstanding of this impact of architecture concurrency on performance provides a basis for
predictable improvement of system performance through systematic engineering changes to
the system architecture. The intent of this project is to demonstrate the impact of concurrency
on performance through architecture analysis of realistic benchmark problems and compari-
son with measured performance.

Understanding the impact of architecture concurrency on the performance of a system, in par-
ticular response time and throughput, has the following benefits:

• Traditional performance modeling and analysis can predict the performance of a particu-
lar system for a particular hardware configuration. This provides insight into whether the

CMU/SEI-2005-TR-020 11

performance requirements are met. However, it provides only limited insight as to how to
improve the performance if the requirements are not met.

• An understanding of the constraints architecture concurrency places on system perform-
ance provides insights into potential performance gains that can be achieved purely
through an increase in computing resources.

• An understanding of the concurrency characteristics of different architecture patterns pro-
vides the basis for systematic architecture changes that will result in predictable im-
provements of system performance.

3.2 Background
Embedded computer systems have evolved from small software systems with monolithic
structures and no operating system that execute on special hardware, to large-scale systems
composed of concurrent applications executing on a common set of distributed computing
resources. Applications embodying static execution timelines and interaction through shared
data areas are being replaced by preemptive scheduling and predictive scheduling analysis to
improve resource utilization and ease system evolution. However, without concurrency con-
trol concurrent execution resulting from preemptive scheduling and distributed processing
can introduce computational and communication non-determinism, resulting in increased po-
tential for timing and data precedence faults. Many of the detrimental effects are not realized
until integration, and sometimes not until system fielding. This problem is compounded as
multiple signal streams are processed in a common set of computing resources, and signal
data from different sensors are integrated to improve the operation and performance of the
system being controlled. Embedded computer systems have evolved from providing basic
control capability to systems that include capabilities and processing requirements similar to
those found in command-and-control systems. Such an evolution can be witnessed in air-
planes, automotive systems, and autonomous robotics systems.

Concurrency has been of concern to the research community for many decades. In the seven-
ties and eighties models for validating the use of synchronization mechanisms to control con-
currency without deadlock or starvation were investigated. Examples include consistent use
of semaphores as synchronization primitives [Habermann 67], concurrent sequential proc-
esses as formalized abstraction [Hoare 85], and Rendezvous as programming language ab-
straction [Ada 83]. In the eighties and nineties, prediction of schedulability and the impact of
shared resource locking were addressed, for example through rate monotonic analysis [Klein
93]. More recently, investigators have studied abstract concurrency models and validation of
application code against these abstractions, for example in the Fluid project led by Scherlis at
Carnegie Mellon University [Greenhouse 2003].

Research in multi-processor and network systems has examined performance prediction
through queuing networks applied to large-scale multi-processor systems [Fuller 78, Jones
78]; distributed resource allocation under timing, load balancing, and fault tolerance con-
straints, for example Carnegie Mellon�s work on TimeWeaver, applied to several industrial

12 CMU/SEI-2005-TR-020

partner project in the Defense Advanced Research Projects Agency (DARPA) Model-Based
Integration of Embedded Software (MoBIES) program [Rajkumar 2003, DeNiz 2004]; and
dynamic load adaptation for critical system processing flows to adjust to overload conditions,
investigated for command-and-control systems such as those found in the DD(X) destroyer
[Welch 98].

As mentioned, performance modeling research has its roots in performance prediction for
multi-processor systems and networks through queuing models. Applied to software systems,
performance modeling takes the form of methods based on queuing networks, process alge-
bras, Petri-nets, simulation, trace analysis, and stochastic processes. Balsamo provides an
excellent survey of the state of performance prediction [Balsamo 2004]. This survey shows
that only recently have attempts been made to base performance modeling on architecture
descriptions.

3.3 Approach
Our approach in developing an analytical framework for determining the impact of architec-
ture concurrency on performance measures of latency and throughput is based on two actual
system architectures and consists of three parts:

1. identification of key architecture characteristics and performance implications for each
of the two actual customer systems through our external collaborators

2. determination of the benefits and limitations of deploying an architecture optimization
technique from one of the customer systems to another embedded system architecture

3. development of an analytical method for predicting latency and throughput for flow-
based embedded system architecture in the context of architecture concurrency

3.4 Collaborators
The SEI team consisted of Peter Feiler, Aaron Greenhouse, Jorgen Hansson, John Hudak, and
Lutz Wrage, and had two external collaborators.

The first external collaboration involved Dave Statezni from Rockwell Collins through his
own support. Through this collaboration the team had access to an avionics system consisting
of 15 subsystems operating in networked multiple processing nodes. Through collaboration
prior to this project we had performed a pattern-based analysis of this avionics architecture
and our collaborator had produced a machine-processable architecture model of an avionics
system in the industry-standard Society of Automotive Engineers (SAE) Architecture Analy-
sis and Design Language (AADL) notation. This model includes timing data and flow speci-
fications of key signal flows. This benchmark is representative of control system applications
that have moved from static timeline scheduling to preemptive scheduling. In addition,
Rockwell Collins has migrated to a partitioned runtime architecture according to the
ARINC653 standard.

CMU/SEI-2005-TR-020 13

A second external collaboration involved Michael Moore from the South West Research In-
stitute (SwRI) through his own support. He provided us with information and documentation
of a system that was a challenge problem in the DARPA MoBIES program. This system is
representative of applications that require operating in a large classification search space to
process data sets. An initial architecture model of this message classification and feature
identification system has been created and a multiple processor networked system implemen-
tation has been constructed using TimeWeaver technology from Carnegie Mellon�s IMAGES
project (led by Raj Rajkumar). SwRI has collected performance measurements demonstrating
throughput and latency improvement. Performance gain in this system was achieved in two
ways. First, an architecture optimization called common subgraph elimination was applied to
remove redundant processing steps. Second, a multi-processor hardware architecture was
used to improve performance through concurrent processing.

3.5 Evaluation Criteria
We have proposed that this project be evaluated based on our success in achieving the follow-
ing:

1. identification of architecture concurrency abstractions that are relevant to predicting la-
tency and throughput of flow-based system architectures

2. development of an algorithm for flow latency analysis in the context of the Open Source
AADL Tool Environment (OSATE) for SAE AADL, its application to the avionics sys-
tem architecture model, and its validation through performance data from the signal
classification system

3. development of an analytical method for predicting throughput under the concurrency
abstractions identified in (1), which can be represented in SAE AADL, and validation of
the method by performance data from the customer system

4. identification of the benefits and limitations of common subgraph elimination as an ar-
chitecture optimization supported by performance measurements

Successful demonstration of the analytical methods for predicting and improving throughput
and latency in the context of SAE AADL-based architecture models has the potential to be-
come an engineering tool in the Model-based Engineering for Embedded Systems effort of
the Performance-Critical Systems initiative in the Dynamic Systems program of the SEI. This
would impact a number of SEI customers as they start to embrace the SAE AADL as an in-
dustry standard.

3.6 Results
Examination of the embedded system architectures from our two collaborators identified both
application architectures as flow-based architectures that can be modeled through a pipeline
pattern. By mapping this pipeline pattern into a model expressed in SAE AADL notation, we

14 CMU/SEI-2005-TR-020

were able to leverage the task and communication abstractions of AADL with precisely de-
fined semantics for execution and communication as the basis for an analytical framework for
latency and throughput analysis.

Furthermore, we were able to leverage an architecture analysis case study on the avionics
system [Feiler2004] that was performed prior to the start of this project. This case study gave
us initial insight on the importance of well-defined communication timing semantics to iden-
tify potential latency issues when migrating from a cyclic executive to a preemptively sched-
uled system and to a partitioned runtime architecture. Our insights regarding the change in
timing characteristics of tasks and communication for such a system has been included as
content material for an SEI public course offering titled Model-Based Engineering for Em-
bedded Systems with AADL.

The examination of the signal classification system allowed us to identify key architecture
patterns that made common sub-expression elimination a successful tool for optimizing
throughput. The available measurements showing performance improvement through the use
of this optimization technique led us to investigate whether this optimization technique has
broader applicability.

Based on the above findings we developed an analytical method for predicting flow latency
based on task execution and communication timing characteristics. This algorithm demon-
strates that sampled processing and sampled communication constrains any reduction in flow
latency that can be gained through additional processors. In other words, latency is strongly
affected by the sampled processing and delayed communication characteristics of a pipeline
pattern, and can primarily be improved by changing the application pattern itself. We have
investigated the use of this analytic method for making lower bound predictions for high-
level architecture models of partitioned systems, and for detailed models of architectures with
a thread-based concurrent execution architecture and mid-frame and phase-delayed commu-
nication characteristics. We have implemented this analytic method as an algorithmic analysis
plug-in for the Open Source AADL Tool Environment. We have applied this analysis plug-in
to the 20,000-line AADL model of the avionics system architecture to identify potential la-
tency issues. Performance measurements from the signal classification system architecture
provide a validation of the predictive nature of our analytical model in that there is little im-
pact of additional processors on the latency.

We are also developing an analytic method for predicting throughput and throughput im-
provements through additional processors. In this case we had to redefine the concept of
throughput for systems that perform data sampling, such as control systems, in order to be
able to predict performance improvement. This approach allows us to develop an algorithm
that can handle both pipelines with complete processing message sequences and processing
of sampled data streams. Performance data from the collaborators provides a validation of
this analytic approach as well. An algorithmic implementation of this analysis method may
not be completed until after the completion of this project.

CMU/SEI-2005-TR-020 15

Finally, investigation of the common subgraph elimination technique has identified the effec-
tiveness of flow fan-out as a key characteristic in a system architecture. We have identified
application areas and development processes that result in placation architectures with these
fan-out characteristics. SAE AADL has explicit support for modeling flows through the run-
time architecture of embedded systems and allows us to do so at different levels of the system
component hierarchy. The degree of fan-out affects the benefit of this optimization. A second
factor is the depth to which the different flow paths have common processing steps. In the
context of this optimization commonality of components must be carefully defined to include
not only the component implementation being the same, but also any calibration parameter
values used to tune the application from a domain perspective. An example is calibration of a
controller or filter. A limiting factor of this optimization is that its application to a fault toler-
ant system architecture can potentially undo the intended redundancy. For a replication-based
redundancy scheme this optimization would remove any intended fan-out to redundant com-
ponents. Thus, an application architecture must be appropriately annotated to ensure that this
optimization is not applied under those circumstances.

3.7 Course and Publications
�Model-Based Engineering with AADL,� public course offering by Software Engineering
Institute; includes sessions on Flow Latency Analysis in High-Level Model, and on Latency
Impact of Migrating to Preemptively Scheduling & Partitioned Thread Architecture.

Impact of Architecture Concurrency on Latency and Throughput, Software Engineering Insti-
tute, Technical Note, forthcoming.

Common Subgraph Elimination as Architecture Optimization, Software Engineering Institute,
Technical Note, forthcoming.

�Open Source AADL Tool Environment (OSATE) Release 1.1,� includes prototype of the
Flow Latency Analysis Plug-in, available at http://www.aadl.info.

3.8 References
URLs are valid as of the publication date of this document.

[Ada 83] Ada 83 Reference Manual. Available at
http://www.adahome.com/Resources/refs/83.html.

[Balsamo 04] Balsamo, S.; Di Marco, A.; Inverardi, P.; & Simeon, M. �Model-
Based Performance Prediction in Software Development: A Sur-
vey.� IEEE Transactions on Software Engineering, May 2004.

16 CMU/SEI-2005-TR-020

http://www.aadl.info
http://www.adahome.com/Resources/refs/83.html

[De Niz 04] De Niz, D. �Modeling Functional and Para-Functional Concerns In
Embedded Real-Time Systems.� PhD diss., Carnegie Mellon Uni-
versity, Electrical & Computer Engineering, April 2004.

[Feiler 04] Feiler, P.; Gluch, D.; Hudak, J.; & Lewis, B. Embedded Systems
Architecture Analysis Using SAE AADL (CMU/SEI-2004-TN-005).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2005.

[Fuller 78] Fuller, S.; Ousterhout, J.; Raskin, L.; Rubinfeld, P.; Sindhu, P.; &
Swan, R. �Multi-Microprocessors: An Overview and Working Ex-
ample.� Proceedings of the IEEE, February 1978.

[Greenhouse 03] Greenhouse, Aaron; Halloran, T.J.; & Scherlis, William L. �Using
Eclipse to Demonstrate Positive Static Assurance of Java Program
Concurrency Design Intent.� Eclipse Technology eXchange (eTX)
Workshop, 2003 Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). Available at
http://doi.acm.org/10.1145/965660.965681.

[Habermann 67] Habermann, A.N. �On the Harmonious Cooperation of Abstract
Machines.�, PhD thesis, Technological University Eindhoven, De-
partment of Mathematics, 1967.

[Hoare 85] Hoare, C.A.R. Communicating Sequential Processes. Prentice-Hall
Publishers, 1985.

[Jones 78] Jones, A.; Chansler, R.; Durham, I.; Feiler, P.; Scelza, D.; Schwan
K.; & Vegdahl, S. �Programming Issues Raised by a Multiproces-
sor.� Proceedings of the IEEE, February 1978.

[Klein 93] Klein, M.; Ralya, T.; Pollak, B.; Obenza, R; & Gonzalez Harbour,
M. A Practitioner’s Handbook for Real-Time Analysis: Guide to
Rate Monotonic Analysis for Real-Time Systems. Kluwer Academic
Publishers, 1993.

[Rajkumar 03] Rajkumar, R. & de Niz, D. �TimeWeaver: A Software-Through-
Models Framework for Real-Time Systems.� Proceedings of the
2003 Conference on Languages, Compilers, and Tools for Embed-
ded Systems (LCTES’03). San Diego, CA, June 11-13, 2003. ACM
2003, ISBN 1-58113-647-1.

CMU/SEI-2005-TR-020 17

http://doi.acm.org/10.1145/965660.965681

[Welch 98] Welch, L.; Shirazi, B.; Ravindran, B.; & Bruggeman, C. �Specifica-
tion and Modeling Of Dynamic, Distributed Real-time Systems.�
Proceedings of the 19th IEEE Real-Time Systems Symposium. Ma-
drid, Spain, 2-4 December, 1998. IEEE Computer Society Press,
1998. Available at http: //computer.org/proceedings/rtss/9212
/9212toc.htm.

18 CMU/SEI-2005-TR-020

4 The Impact of Function Extraction
Technology on Next-Generation
Software Engineering
Richard C. Linger, Mark G. Pleszkoch, Stacy J. Prowell, Gwen
Walton, Alan R. Hevner, Rosann W. Collins

4.1 Purpose
Traditional engineering disciplines depend on rigorous methods to evaluate the expressions
(e.g., equations) that represent and manipulate their subject matter. Yet current-generation
software engineering has no practical means to fully evaluate the expressions it produces. In
this case, the expressions include software designs and computer programs, and evaluation
means understanding their full behavior, right or wrong, intended or malicious. Short of an
impractical expenditure of resources, no programmer can say for sure what the behavior of a
sizable program is in all circumstances of use, a reality that lies at the heart of many problems
in software. The result of this technology gap is deployment of systems containing unknown
errors, vulnerabilities, and malicious code. The risks are substantial for acquisition organiza-
tions that lack the means to validate the full behavior of delivered systems, and offshore de-
velopment of U.S. software further compounds the problem for homeland security.

Current-generation software engineering operates in a world of unknown program behaviors
that no amount of effort seems able to surmount. For example, no testing effort, no matter
how extensive, can exercise more than a small fraction of possible system behaviors. Lacking
better technology, behavior discovery today is a haphazard and imprecise drain on resources
carried out by program reading and analysis with full human fallibility. Yet comprehensive
knowledge of software behavior is essential for fast development and verification of pro-
grams.

While this problem is pervasive today, it need not be so in the future. We believe that a key
enabling capability for next-generation software engineering is the transformation of program
behavior analysis from an error-prone, resource-intensive process in human time scale into a
precise, automated calculation in CPU time scale. An emerging technology termed function
extraction (FX) holds promise to make this next-generation capability a reality. The objective
of FX technology is routine, automated calculation of the full functional behaviors of pro-
grams. The semantics of program behavior revealed by FX methods directly address the DoD
challenges of determining expected properties of software systems before they are built, con-

CMU/SEI-2005-TR-020 19

firming their as-built properties, and dramatically decreasing the amount of effort required for
implementing new software-intensive systems.

This independent research and development project has addressed the following goals:

• Determine the potential impact of FX technology on software engineering activities from
specification and design to implementation and testing.

• Investigate techniques for integrating FX into next-generation software engineering,
characterized by fast and correct program development and rapid composition, valida-
tion, and evolution of systems.

• Examine the potential for FX technology to become an SEI initiative in the future. In par-
ticular, the study focused on the extent to which further investments in FX can serve the
needs of SEI clients.

The primary work product of the study was an SEI technical report [Hevner 05] detailing

• the impacts of FX technology on software engineering life-cycle activities

• a recommended approach to implementing FX methods in software engineering tools and
practices

• examples of FX applications in various software engineering contexts

• evaluation and feedback from a major software organization on the impact of FX tech-
nology on its software engineering capabilities

The need for this study was exemplified in a recent analysis by the National Institute of Stan-
dards and Technology that reports that faulty software costs the U.S. economy nearly $60
billion annually in breakdowns and repairs. FX technology has the potential to improve the
practice of software engineering to help reduce such waste and inefficiency.

4.2 Background
The study of function extraction was initiated in the SEI CERT Program, resulting in publica-
tion of a paper detailing the technology and its potential [Pleszkoch 04], and development of
a proof-of-concept prototype. This work led to sponsorship of an ongoing CERT project to
develop the Function Extraction for Malicious Code (FX/MC) system.

4.2.1 The Idea of Function Extraction
Function extraction deals with the semantics of software behavior. All levels of abstraction in
the development of software systems deal with behavioral semantics, from low-level machine
language operations to high-level system capabilities. As software systems are developed and
evolve over time, semantic content is continuously created, intentionally or unintentionally,
correct or incorrect. Effective development and evolution of a system depends on how well
its behavior is understood by its developers. The complexity and quantity of semantic infor-

20 CMU/SEI-2005-TR-020

mation can overwhelm developers, leading to loss of intellectual control. This loss of seman-
tic understanding occurs for many reasons at all levels of a system. Error! Reference source
not found. illustrates examples of the creation and inevitable loss of behavioral semantics
information, from individual chips to entire information systems.

The ultimate goal of function extraction is to calculate full semantic behavior at all levels of
system abstraction, from specification to design to implementation. This goal can be achieved
by automating the computation and composition of behaviors in the languages employed to
express such artifacts. These languages, whatever their level of abstraction, embody defini-
tions of the behavioral semantics of their structures and rules of combination. These seman-
tics can be captured and employed for function extraction as shown in Error! Reference
source not found..

The function extraction process at any system level begins with a well-defined language
whose semantics can be captured in terms of the functions of language structures and the
rules that govern their combination. An automated function extractor can then be developed
for the language. Any system artifact written in that language can then be submitted to the
function extractor, which can produce a behavior catalog containing all the behavior defined
by the artifact.

Level Creation and Loss of Semantic Knowledge

Processors Creation: engineers create the behavioral semantics of chip operations by combin-
ing circuits
Loss: errors and ambiguities in processor manuals

Languages Creation: designers create the behavioral semantics of language instructions by
combining chip operations
Loss: errors and ambiguities in language manuals; compilers define semantics

Components Creation: programmers create the behavioral semantics of components by com-
bining language instructions
Loss: full functional behavior of components not documented

Applications Creation: programmers create the behavioral semantics of applications by com-
bining components
Loss: �Bob knows the application, but he�s retiring.�

Systems Creation: engineers create the behavioral semantics of systems by combining ap-
plications
Loss: systems �go natural� from accumulated knowledge loss

Table 4-1: Creation and Loss of Semantic Information in Software Development

CMU/SEI-2005-TR-020 21

Behavior
Catalog

Start with a language
(for specification,
design, programming,
etc.)

Develop an artifact
(specification, design,
program, etc.) using
the language

Capture the functional
semantics of the
language structures
and their rules of
combination

Develop a Function
Extractor for the
language semantics

Function
Extractor

System
Artifact

Figure 4-1: The Basic Concept of Function Extraction

4.2.2 Fundamentals of Program Behavior Calculation
The function-theoretic model of software [Hausler 90, Hevner 02, Hoffman 01, Linger 79,
McCarthy 63, Mills 86, Mills 02, Pleszkoch 90, Prowell 99] treats programs as rules for
mathematical functions. The purpose of automated behavior calculation is to extract the full
functional behavior of programs, that is, how programs transform inputs into outputs in every
circumstance, and present the behaviors to users as precise as-built specifications in proce-
dure-free form for analysis.

The fundamental insight in function extraction technology is the realization that, while siz-
able programs contain a virtually infinite number of execution paths, they are constructed of a
finite number of nested and sequenced control structures, each of which makes a finite con-
tribution to overall behavior. These structures correspond to mathematical functions or rela-
tions, that is, mappings from inputs to outputs. The functional mappings can be automatically
extracted in a stepwise process that traverses the finite control structure hierarchy. At each
step, details of local code and data are abstracted out, while their net effects are preserved and
propagated in the extracted behavior. While no general theory for loop abstraction can exist,
use of recursive expressions and patterns for loops provides an engineering solution. The
mathematical foundations for function-theoretic behavior calculation are currently being ap-
plied to the specialized problem of malicious code analysis in the Function Extraction for

22 CMU/SEI-2005-TR-020

Malicious Code project, which is being developed to determine the behavior of malicious
code expressed in the Intel Assembler Language. Based on this initial experience, the purpose
of this independent research and development project was to explore the full effect that FX
technology can have on the broader software engineering life cycle.

4.3 Approach
In order to inform and guide the direction of FX research and development, our research fo-
cused on better understanding how enterprises can employ FX technologies in their software
engineering environments. Error! Reference source not found. shows a portion of the op-
portunities we have studied to evaluate next steps for FX evolution. It lists software devel-
opment activities in the rows and potential language environments in the columns. The high-
lighted cell is our starting point�the current project to develop a function extractor for
Assembler Language. The table also includes several FX-related tools, for example, structure
transformers to extract the control flow behavior of programs and express it in structured
form, component composition generators to calculate the net behavior of composed compo-
nents, and behavior catalog analyzers to respond to user queries on behavioral properties of
interest. To help determine the next steps of development, we have gathered and analyzed
data from potential users of FX technologies. With this information, we are able to recom-
mend high-pay-off areas for FX research and development.

To structure the research study, we posed two sets of three questions each. It is generally un-
derstood that program comprehension is a critical aspect of all software development and
maintenance activities [Rajlich 02]. Prior research has found that both program and task
characteristics interact to impact the nature of program comprehension [Storey 99], thus it is
important to develop tools with specific software engineering activities in mind. Therefore,
the first three research questions for this study focused on understanding current approaches
to, cost of, and impacts of program comprehension, with particular attention paid to how
these vary by type of activity:

Research Question 1: What techniques are in current practice to understand and document
program behavior?

Research Question 2: What are the typical costs of program comprehension and documen-
tation to development?

Research Question 3: What is the relationship of program comprehension and system qual-
ity?

CMU/SEI-2005-TR-020 23

Life Cycle
Activity

Specification
Automation

Architecture
Automation

Assembler
Automation

C Automation C++ Automation Java Automation Other Lang.

Specification
Development

Specification
Behavior Extractor
Behavior Catalog
Analyzer

Architecture
Development

 Architecture
Behavior
Extractor
Behavior Catalog
Analyzer

Component
Development:
Evaluation &
Selection and
Design &
Implementation

 Structure
Transformer
Function Extractor
Behavior Catalog
Analyzer

Structure
Transformer
Function Extractor
Behavior Catalog
Analyzer

Structure
Transformer
Function Extractor
Behavior Catalog
Analyzer

Structure
Transformer
Function Extractor
Behavior Catalog
Analyzer

Structure
Transformer
Function Extractor
Behavior Catalog
Analyzer

Correctness
Verification

 Correctness
Verifier

Correctness
Verifier

Correctness
Verifier

Correctness
Verifier

Correctness
Verifier

System
Integration

 Component
Composition
Generator
Behavior Catalog
Analyzer

Component
Composition
Generator
Behavior Catalog
Analyzer

Component
Composition
Generator
Behavior Catalog
Analyzer

Component
Composition
Generator
Behavior Catalog
Analyzer

Component
Composition
Generator
Behavior Catalog
Analyzer

System Testing Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

System
Maintenance
and Evolution

 Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Table 4-2: FX Impacts—Where to Next?

The second set of research questions centered on views about the potential of FX from devel-
opers who have knowledge of the technology:

Research Question 4: In which system development activities and environments does FX
technology have the potential for greatest impacts?

Research Question 5: What are the potential impacts of FX technology on other software
engineering technologies and issues?

Research Question 6: What are the challenges to adoption of FX technology?

A carefully designed empirical study was performed to answer these research questions.
Study participants were experienced system developers. The study questionnaire was created
by the project research team and was pilot tested with an academic audience composed of
professors and graduate students at a major research university. The study was then con-
ducted at a Fortune 100 company with a large and sophisticated group of software develop-
ers. The session began with a presentation on FX technology to a roomful of software devel-
opers and remotely located developers through a Web cast. The remote group could see the
presentation slides and had two-way audio. The training presented function extraction tech-
nology and detailed examples of how it could work in software development. This presenta-

24 CMU/SEI-2005-TR-020

tion lasted approximately 90 minutes, followed by a question-and-answer session. After the
training session, the researchers asked participants to complete the questionnaire on potential
impacts of FX technology in their organization. Software engineers from both on-site and
remote locations provided usable questionnaire data. A full description of the results of this
study is available in an SEI technical report [Hevner 05]. The data gathered led to the rec-
ommendations enumerated in the Results section below.

4.4 Collaborations
The SEI team for this project was composed of Richard Linger, Gwen Walton, Mark Plesz-
koch, and Stacy Prowell. Collaborating on the project as SEI Visiting Scientists were Alan
Hevner and Rosann Collins from the University of South Florida.

4.5 Evaluation Criteria
This study has produced results that clearly reflect the needs and objectives of SEI sponsors
and clients. Specifically, the project has

• specified the impact of function extraction technology on software engineering life cycle
activities

• assessed the risks and rewards of investment in FX development

• performed an investigation of the potential for function extaction technology to become a
major SEI initiative in the future

4.6 Results
This section identifies next steps for the FX research and development program based on the
industry survey data gathered. The data clearly indicated the need for the six project goals
listed below. In addition, a seventh goal not discussed in the survey instrument is recom-
mended by the project study authors. Thus, we recommend that the evolution of FX technol-
ogy be focused on achievement of these goals:

Goal 1: Complete Development of the FX Prototype for Assembler Language Programs

It is important that the FX project continue with development and deployment of the FX/MC
system. The Assembler Language environment was rated as the most important for showing
FX impacts by the surveyed software engineers. An operational FX system for understanding
malicious code will be a key advantage in demonstrating the potential of the technology to
industry.

Goal 2: Create FX Automation to Verify Correctness of Programs

The software engineers identified the activity of correctness verification as having the great-
est potential for FX impacts. Software developers are demanding improved methods for un-

CMU/SEI-2005-TR-020 25

derstanding the behaviors of programs and verifying the correctness of these behaviors with
respect to specifications and designs. This information tells us that a near-term goal of the
project must be to demonstrate automation of program correctness verification using FX
technology.

Goal 3: Create FX Automation for High-Level Programming Environments Starting
with Java

The software engineers rated the programming languages Java, C, and C++ as very important
for the application of FX technology. It is clear that the software development industry has
great need for support in understanding the behaviors of programs written in these high-level
languages. Thus, another important near-term goal of the FX project will be to develop a
function extractor prototype for one or more of the most popular programming languages.
The engineers recommended Java as their first choice.

Goal 4: Perform Research on Semantics of System Specification and Architecture for
FX Automation

The software engineers in the survey demonstrated concern and even skepticism that the
promise of FX theory can be successfully transitioned into effective engineering practices for
the front-end activities of system specification and architecture development. The reason is
the inability with state-of-the-art methods to rigorously define and represent the semantics of
software specifications, architectures, and high-level designs. In fact, FX technology is seen
as having little near-term impact on these early life cycle activities due largely to the lack of
well-defined semantics in these areas. An initiative to perform research on the semantics of
software system specification and architecture is required for FX technology to be applied in
these activities.

Goal 5: Perform Research on Human/Computer Interfaces for FX Automation

Effective use of innovative technologies such as FX depends on adaptable and user-friendly
human/computer interfaces. It is important that research on user interfaces for FX be per-
formed in parallel with development of the automation itself. Computed program behavior
has not been available to software engineers in the past, and new reasoning and analysis pat-
terns are sure to emerge. Research is required to understand the dynamics of this new aug-
mentation of human intelligence for optimal design of its user interfaces.

Goal 6: Perform Experimentation with FX Technology to Evaluate its Impact

Scientific research requires rigorous experimentation to evaluate the quality and effectiveness
of results. The artifacts of FX research and development are theories, practices, and auto-
mated tools [Hevner 04]. Empirical evaluation of these artifacts will provide the evidence
required by eventual users to accept and adopt FX as an element of their software develop-
ment processes. Any new technology faces initial resistance because it requires a learning
curve and changes in entrenched practices. Rigorous experimentation with FX technologies

26 CMU/SEI-2005-TR-020

resulting in clear evidence that they improve development productivity and system quality
will ease their acceptance [Green 04, 05]. Goal 7: Perform Research on the Semantics of
Software Quality Attributes for FX Automation

In the current state of the art, analysis of software quality attributes such as performance and
security is often carried out through subjective, a priori evaluations that provide little value in
the dynamics of system operation, where attribute values can change quickly. A capability to
compute quality attribute values with mathematical precision will permit both rigorous as-
sessment and improvement of attributes during software development, and the real-time
evaluation of system attributes during operation. Research is required to define computational
models for quality attributes that can be evaluated by FX automation. That is, quality attrib-
utes must be treated as functions to be computed as dynamic properties of systems.

In summary, the findings of this study define a rich program of research and development in
FX technology that can make a major contribution to next-generation software engineering.
Guided by these findings, the FX team intends to continue development of the FX/MC sys-
tem, create a correctness verification prototype based on FX technology, and investigate the-
ory and practice for defining software quality attributes in computational terms. In addition,
the team will conduct empirical experimentation on reasoning methods and perceptions of
FX users to better understand how to apply the technology to augment human capabilities.

4.7 References
URLs are valid as of the publication date of this document.

[Green 04] Green, G.; Collins, R.; & Hevner, A. �Perceived Control and the
Diffusion of Software Development Innovations,� Journal of High
Technology Management Research, Vol. 15, No. 1, February 2004,
pp. 123-144.

[Green 05] Green, G.; Hevner, A.; & Collins, R. �The Impacts of Quality and
Productivity Perceptions on the Use of Software Process Improve-
ment Innovations.� Information and Software Technology, Vol. 47,
No. 8, June 2005, pp. 543-553.

[Hausler 90] Hausler, P.; Pleszkoch, M.; Linger, R.; & Hevner, A. �Using Func-
tion Abstraction to Understand Program Behavior.� IEEE Software,
Vol. 7, No. 1, IEEE Computer Society Press, Los Alimitos CA,
January 1990.

CMU/SEI-2005-TR-020 27

[Hevner 02] Hevner, A.; Linger, R.; Sobel, A.; & Walton, G. �The Flow-Service-
Quality Framework: Unified Engineering for Large-Scale, Adaptive
Systems.� Proceedings of the 35th Annual Hawaii International
Conference on System Sciences, Hawaii, January 2002. IEEE Com-
puter Society Press, Los Alamitos, CA, 2002.

[Hevner 04] Hevner, A.; March, S.; Park, J.; & Ram, S. �Design Science Re-
search in Information Systems.� Management Information Systems
Quarterly, Vol. 28, No. 1, March 2004, pp. 75-105.

[Hevner 05] Hevner, A.; Linger, R.; Collins, R.; Pleszkoch, M.; Prowell, S.; &
Walton, G. The Impact of Function Extraction Technology on Next-
Generation Software Engineering (CMU/SEI-2005-TR-015). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, July 2005.

[Hoffman 01] Hoffman, D. & Weiss, D. (eds.). Software Fundamentals: Collected
Papers by David L. Parnas. Addison Wesley, Upper Saddle River,
NJ, 2001.

[Linger 79] Linger, R.; Mills, H.; & Witt, B. Structured Programming: Theory
and Practice. Addison Wesley, Reading, MA, 1979.

[McCarthy 63] McCarthy, J. �A Basis for a Mathematical Theory of Computation.�
Computer Programming and Formal Systems, P. Braffort and D.
Hirschberg, eds. North-Holland, Amsterdam, 1963.

[Mills 86] Mills, H.; Linger, R.; & Hevner, A. Principles of Information Sys-
tem Analysis and Design. Academic Press, San Diego, CA, 1986.

[Mills 02] Mills, H. & Linger, R. �Cleanroom Software Engineering.� Ency-
clopedia of Software Engineering, 2nd ed., J. Marciniak, ed. John
Wiley & Sons, New York, 2002.

[Pleszkoch 90] Pleszkoch, M.; Hausler, P.; Hevner, A.; & Linger, R. �Function-
Theoretic Principles of Program Understanding.� Proceedings of
the 23rd Annual Hawaii International Conference on System Sci-
ence. Hawaii, January 1990. IEEE Computer Society Press, Los
Alamitos, CA, 1990.

28 CMU/SEI-2005-TR-020

[Pleszkoch 04] Pleszkoch, M. & Linger, R. �Improving Network System Security
with Function Extraction Technology for Automated Calculation of
Program Behavior.� Proceedings of the 37th Annual Hawaii Inter-
national Conference on System Sciences. Hawaii, January 2004.
IEEE Computer Society Press, Los Alamitos, CA, 2004.

[Prowell 99] Prowell, S.; Trammell, C.; Linger, R.; & Poore, J. Cleanroom Soft-
ware Engineering: Technology and Practice. Addison Wesley,
Reading, MA, 1999.

[Rajlich 02] Rajlich, V. & Wilde, N. �The Role of Concepts in Program Com-
prehension.� Proceedings of the 10th International Workshop on
Program Comprehension (IWPC ’02). IEEE Computer Society
Press, 2002.

[Storey 99] Storey, M.A.D.; Fracchia, F.D.; & Muller, H.A. �Cognitive Design
Elements to Support the Construction of a Mental Model During
Software Exploration.� The Journal of Systems and Software, Vol.
44, No. 3, January 1999.

CMU/SEI-2005-TR-020 29

30 CMU/SEI-2005-TR-020

5 Issues in Scalability
Charles Weinstock, John Goodenough

5.1 Purpose
In 2003 teams from three federally funded research and development centers (FFRDCs)�the
SEI, the MITRE Corporation, and the Institute for Defense Analyses�conducted a joint
study on software producibility for the Undersecretary of Defense for Science and Technol-
ogy. Software producibility was defined as the ability to deliver software-based capability
predictably and efficiently.

The impetus for forming this study group was the increasing perception in government and
elsewhere that software producibility is a problem. Edward C. �Pete� Aldridge, the former
Under Secretary of Defense for Acquisition, Technology and Logistics, was quoted as saying:
�[Software] continues to grow in importance in our weapons systems�and remains a signifi-
cant contributor to program cost, schedule and performance shortfalls.�1 Delores Etter, cur-
rently Assistant Secretary (Research, Development & Acquisition) for the U.S. Navy, said in
19992 that half of all DoD software projects cost more than double their initial cost estimates,
projects slipped an average of 36 months, and a third of all projects ended up being canceled.

One of the key findings of the FFRDC team was that although management issues are sig-
nificant contributors to most DoD program shortfalls, there are also clear underlying science
and technology gaps. These technical problems are often only clearly revealed when the sys-
tems are integrated. The problem is that the technical basis for software producibility is defi-
cient. We lack the engineering basis to accurately predict behavior, performance, and other
key properties of large and complex software systems before they are built.

One clear example of our lack of technical basis for predicting system behavior is illustrated
by the fact that a significant number of systems fail in initial use (or even in integration) be-
cause they do not scale well, that is, factors that have a negligible effect when systems are
below a certain scale (on some dimension) have a harmful effect as the scale increases. Un-
derstanding the effects of scale on a system is the scalability problem. Although the problem
is not new, the increasing size of DoD systems (e.g., increasing code size, increasing number

1 Testimony of the Undersecretary of Defense (Acquisition, Logistics, and Technology) to the

House Armed Services Committee, July 12, 2001, armedservices.house.gov/ openingstatement-
sandpressreleases/107thcongress/01-07-12aldridge.html

2 Etter, D. Acquisition Software Oversight, Crosstalk, August 1999, p. 3,
(http://www.stsc.hill.af.mil/crosstalk /1999/08/etter.pdf)

CMU/SEI-2005-TR-020 31

http://www.stsc.hill.af.mil/crosstalk/1999/08/etter.pdf

of users, increasing scope of demands) makes the problem more critical today than in the
past. And although increase in size usually creates management challenges, technical issues
also arise.

The purpose of this study was to look more closely at the scalability problem. We wanted to
characterize technical sources of scalability problems, existing solutions, and technical gaps.
Given a better understanding of scalability issues, we hoped to make it possible for engineers
to identify potential scaling problems earlier in system design and develop better solutions. A
good understanding of scalability issues could also help ensure improved acquisition out-
comes.

5.2 Background
When we proposed this independent research and development project, we thought we knew
what the attribute we call �scalability� was. We expected to find a significant literature on the
subject and hoped to be able to apply techniques that we�ve been developing at the SEI, such
as assurance case technology3 to some of the identified problems.

As we delved more and more into the literature surrounding scalability we found that this
was not actually the case. There were a lot of papers that purported to deal with the scalabil-
ity problem, but we were hard pressed to find any papers with a crisp definition of the term,
much less a categorization of or solution to the problem of developing large systems so that
they become scalable. Indeed, we discovered that we didn�t fully understand or appreciate the
meaning of the term ourselves. It turns out that everyone �knows� what scalability is until
they start to dig deeper and try to state underlying principles and concerns.

5.3 Approach
Our initial approach was to conduct a literature survey on the subject and to interview col-
leagues at the MITRE Corporation who had participated in programs that had experienced
scalability problems. The collaboration with MITRE was intended to help us identify scal-
ability issues, explain their consequences in the particular systems studied, analyze effective
and ineffective approaches for identifying and solving these issues, and develop proposed
standard analysis patterns for identifying the issues and evaluating potential solutions.

As a result of the literature search, we had hoped to identify technology gaps and relate these
gaps to promising approaches. However, as already mentioned, the results of our literature
survey were not at the level we expected, and as we describe below the collaboration with
MITRE failed to get off the ground despite the best intentions of both parties.

3 See CMU/SEI-2004-TN-016, available at http://www.sei.cmu.edu/publications/documents

/04.reports/04tn016.html.

32 CMU/SEI-2005-TR-020

http://www.sei.cmu.edu/publications/documents

In lieu of talking with MITRE engineers, we interviewed several colleagues at Carnegie Mel-
lon�s School of Computer Science who had encountered significant real-world scalability
problems in both commercial and academic systems. We synthesized the results of these in-
terviews and the issues revealed by the literature survey into an SEI technical note that will
be published later in 2005.

5.4 Collaborations
The SEI technical staff members involved on this project are John Goodenough and Charles
B. Weinstock. We originally expected to have collaborators from the MITRE Corporation,
but this did not come to pass due to unavoidable new commitments on their part and confi-
dentiality concerns that arose about discussing scalability failures observed in their clients�
systems,. Nonetheless, we did conduct some very helpful interviews with individuals in the
Carnegie Mellon School of Computer Science, including professors Bruce Maggs, Mahadev
Satyanarayanan, and David Farber. They volunteered the time required for the interviews.

5.5 Evaluation Criteria
At the onset of this project we specified the following success criteria:

• identification of technical gaps that appear to have a significant impact on the ability of
engineers to identify and/or address scalability problems early in system development

• completion of a literature survey that makes clear whether there are unexploited tech-
nologies that could improve our ability to engineer systems that scale well

• identification of analysis patterns and approaches that make it easier for engineers and
acquisition agents to reliably determine if scalability problems are likely to be critical for
a system under development

5.6 Results
Our inability to work with actual systems experiencing scalability problems caused consider-
able delays for this effort. Although we have accomplished much in surveying the literature
and in identifying technical gaps (the first two success criteria above), we have not had an
opportunity to begin to explore patterns for analyzing scalability problems.

The current definitions of scalability are rather informal and ad hoc. They deal with symp-
toms rather than causes�i.e., if a system performs well as load increases, it is considered
�scalable.� With few exceptions, papers that use the term scalability talk about how perform-
ance is better in scalable systems, but not much about principles. The mental model for scal-
ability is fuzzy, and this limits the community�s ability to ensure that systems can readily
adapt as demand (on some dimension) increases.

CMU/SEI-2005-TR-020 33

In general, with exceptions for parallel computation and distributed simulations, there is no
existing framework for understanding the nature of scalability issues. Without such a frame-
work�a �theory of scalability� if you will�it is difficult to put in context the lessons learned
on particular systems so future systems can address certain types of scalability problems in a
more cost-effective manner. Although engineers can deal with scaling issues as they arise, the
overall state-of-the-practice seems to be rather ad hoc. There is a need for a conceptual
framework addressing issues of scalability. Such a framework could guide engineers so they
could identify potential scalability problems in advance.

In short, we lack a precise characterization of what scalability is, how to measure it, and what
factors affect it.

Our literature survey did identify some scalability prediction strategies that may have an im-
pact on the ability to engineer scalable systems. We have also identified a glimmer of a con-
ceptual framework�a key unifying notion that has not been addressed by the literature in
other than an ad hoc manner. This is the notion that various dimensions of scalability exist
and the technical approaches for each dimension, and for different portions of a given dimen-
sion, can differ quite a bit. In our tentative conclusions, we consider a scalability dimension
to be a type of system resource; limitations on the resource make systems unusable as load
(on the resource) increases. Among the dimensions we have tentatively identified are the
usual ones of network bandwidth and CPU capability. Other, less commonly recognized di-
mensions include

• the administrative dimension�the human support activities needed to keep users happy;

• the human interface dimension�controlling display real estate or the amount and rate of
information presented to users;

• the coupling dimension�how modifying a system to increase its capability on one di-
mension may increase the load on another dimension, which then needs additional modi-
fication;

• the business case dimension�how much should be invested up front to improve a sys-
tem�s scalability on one of the other dimensions;

• a modifiability dimension�the ability to retain conceptual control over a system as it
evolves; failure on this dimension is exemplified by the situation where the defects in a
system reach a steady, and unsatisfactory, level because each bug fix introduces new de-
fects;

• and (perhaps) an openness dimension�decisions that make it easier or more difficult to
attract new and varied users to a system; this affects the ability of a system to stimulate
higher demand from its potential user domain.

5.6.1 What is Scalability?
System scalability is not a Boolean attribute taking on a true or false answer. All systems
scale to some point. Alternatively no system is infinitely scalable. Ultimately, even a system

34 CMU/SEI-2005-TR-020

designed for maximal scalability will run up against physical limitations (e.g., the speed of
light.) When designing a system we make informed guesses based, presumably, on require-
ments, and experience as to the needed resources and the demands on those resources. If we
are doing a good job of system design we try to make informed guesses as to the changes that
the future will bring�both in terms of resources and in terms of usage patterns. We then try
to design the system so that it can accommodate those anticipated changes�perhaps by hav-
ing all the resources we need from the beginning, or perhaps by designing the system so that
resources can be added dynamically as needed. If we�re doing a really good job of system
design we add some margin to allow for even more significant changes than we forecast. Of
course a poor design won�t even have taken current resources and usage profiles into account.
This happens more than it should and was one of the initial motivations for this study.

5.6.2 Achieving Scalability Involves Making Tradeoffs
Building a system to be scalable almost always requires making tradeoffs with other attrib-
utes of the system. In order to achieve ever higher levels of operation, it may be necessary to
either give up performance, usability, or some other attribute, or to pay a big monetary price.
The typical tradeoff associated with scalability is trading performance at lower levels of load
for the ability to handle larger loads when necessary, but there are other possibilities. For in-
stance:

• Designing a system to scale may entail upfront costs that are higher than those of a non-
scalable version of the same system.

• It may be necessary to give up fine-grain human control of the system to achieve levels
of scalability that would otherwise be unmanageable.

• It may be necessary to design the system with less functionality than would be the case if
it did not have to scale.

5.7 Conclusion
Although this project did not achieve one of its key goals�namely the identification of
analysis patterns and approaches that make it easier for engineers and acquisition agents to
reliably determine if scalability problems are likely to be critical for a system under devel-
opment�we did identify a key technical gap: the lack of a good framework for understand-
ing the nature of scalability and the need to focus subsequent work toward analysis and pre-
diction.

We believe that we have made significant progress in defining what scalability is and what it
is not while laying out the problem space for the further exploration of scalability issues in
subsequent efforts.

CMU/SEI-2005-TR-020 35

5.8 References
URLs are valid as of the publication date of this document.

[Goodenough 05] Goodenough, John & Weinstock, Charles B. Lessons in Scalability.
Software Engineering Institute, Carnegie Mellon University. Forth-
coming, November 2005.

36 CMU/SEI-2005-TR-020

6 Proof-Carrying Code
Kurt C. Wallnau, Sagar Chaki

6.1 Purpose
There is an evident need for mechanisms that enhance our ability to trust third-party soft-
ware. In the current era of plug-and-play, off-the-shelf programs are increasingly available as
modules or components that can be attached to an existing infrastructure. More often than
not, such plug-ins are distributed in machine code or binary form. How do we establish that
the delivered software is trustworthy�that is, that its execution will do no harm , where the
definition of �harm� may vary? This is of course a longstanding question in the software in-
dustry. There are a number of techniques used in practice, but they tend to fall within three
broad, not mutually exclusive, approaches:

1. Trusted certifier. In this approach, a trusted third party tests a software product for com-
pliance to specified criteria. A well known example is the National Security Agency�s
trusted computer security evaluation criteria (TCSEC) and its recent incarnation as the
National Information Assurance Partnership (NIAP) Common Criteria and Protection
Profiles.

2. Trusted supplier. In this approach, software is considered trustworthy if a trustworthy
supplier produces it. This is one underlying motive for software process maturity, but
cryptographic technology (e.g., digitally signed device drivers) is also seen, tempered by
caveat emptor.

3. Runtime infrastructure. In this approach, untrusted code will execute within trusted en-
claves within a trusted computing base. Enclaves can be established through sandbox-
ing, runtime monitors, or software fault isolation.

These broad approaches have their merits, but suffer obvious limitations. Third-party certifi-
cation is only as good as the evaluation criteria and the quality of testing. In practice, criteria
have substantial subjective content, and testing is expensive and necessarily non-exhaustive.
The trusted supplier approach also suffers from subjectivity, but, more fundamentally, from
indirectness: nothing is said about any particular software product. Runtime infrastructure has
its merits, but incurs additional complexity and a persistent runtime penalty for code execu-
tion.

What is needed is an objective, trustworthy, and automated means for establishing proof-level
confidence that binary executable code is safe with respect to explicit and unambiguous trust

CMU/SEI-2005-TR-020 37

policies. For this purpose we investigated the maturity of proof-carrying code (PCC), some-
times also referred to as self-certifying binaries.

The objective of this research was to develop an understanding of ongoing research in PCC,
to identify its open problems, and to identify areas where transitionable progress has been
made. A second objective was to investigate and possibly prototype the use of model check-
ing technology to generate proof certificates of specific safety policies on software delivered
from untrusted suppliers.

6.2 Background
In 1997 Necula and Lee demonstrated a new technology, which they called proof-carrying
code for obtaining objective trust in software [Necula 96, 97]. The basic idea is that the soft-
ware delivered as binary code contains embedded in the code a proof of its behavior. Gener-
ating the proof is expensive, but can be substantially automated; checking the proof is inex-
pensive and simple, and in fact reduces to a form of type checking at the machine-code level.
With PCC, proof-level assurance can be obtained automatically, reliably, and directly on the
executable code itself.

PCC remains an active area of investigation, with the bulk of the theoretical and practical
results produced at the University of California�Berkeley, Princeton, Cornell, Yale, Carnegie
Mellon, and recently Harvard. The focus of PCC has generalized somewhat into the topic of
certifying compilation, with which it shares many of the same objectives and technologies.
Indeed, there is significant overlap in these communities.

6.3 Approach
The research conducted by the SEI sought answers to two questions:

1. What is the general state of PCC research, and what aspects of PCC have neared the
state where they can be transitioned into practical use?

2. Can model checking technology developed at Carnegie Mellon and the SEI be adapted
to generate proof certificates for certifiably trustworthy code?

To answer these questions we combined literature survey and analysis with practical proto-
typing.

6.4 Collaborations
This project supported the efforts of one PhD student in the Carnegie Mellon School of Com-
puter Science (SCS), Steven Magill, and one post-doctoral researcher in SCS, Alexsandar
Nanevski, now at Harvard. We were also greatly assisted in our research by SCS Professor
Peter Lee, a co-inventor of PCC, and SCS Professor Edmund Clarke, co-inventor of model
checking.

38 CMU/SEI-2005-TR-020

6.5 Evaluation Criteria
At the outset of the research we established the following success criteria:

• Obtain an accurate description of the current state of the research in PCC.

• Assess the potential for using model checking technology to generate proof certificates.

• Improve collaborative work between the SEI and the Carnegie Mellon School of Com-
puter Science.

• Improve the visibility of the SEI in the computer science research community.

We believe the 2004�05 research satisfied each criterion.

6.6 Results
The research produced three significant results:

• a survey of the state of the research and description of main themes and challenges

• a prototype certifying model checker

• foundations for proving heap and other resource properties with separation logic

6.6.1 Survey of the State of the Research
An online bibliography of more than 70 articles, reports, and tutorial presentations on PCC
and related topics was collected. The survey helped to classify the research areas and pro-
gress that was outlined in general terms, below. A tutorial presentation of these results was
presented to the International Federation of Information Processing Working Group 2.4 (IFIP
WG 2.4) on Software Implementation Technology in October.

6.6.1.1 Archetypal PCC

Necula and Lee�s work was seminal, and established a characteristic architecture for subse-
quent research in the field. We refer to this characteristic architecture as archetypal PCC. Its
essential elements are depicted in Figure 6-1.

CMU/SEI-2005-TR-020 39

Code ProducerCode Consumer

Trusted Kernel

Proof Checker

Untrusted
Extension

VCGen

Proof generator
(extended

1st order logic)

machine code c

<c, safety predicate sp>

<c, proof object po(sp)>
Guard

c

spÕ

<spÕ,po(sp)>

T or F

T

Finstall and run c

Logic
Framework

(ELF)

Verification Condition
Generator (VCGen)

Logic
Definition

Logic
Definition

Code ProducerCode Consumer

Untrusted
ExtensionTrusted Kernel

2.

3.

4.

5.

6.

7.

Proof Checker

VCGen

Proof generator
(extended

1st order logic)

machine code c

<c, safety predicate sp>

<c, proof object po(sp)>
Guard

c

spÕ

<spÕ,po(sp)>

T or F

T

Finstall and run c

Logical
Framework

Verification Condition
Generator (VCGen)

Logic
Definition

Logic
Definition

1. publish

Figure 6-1: Archetypal Proof-Carrying Code

The world is partitioned into code consumers and code producers. An alternative interpreta-
tion of this partition that is sometimes useful is that code consumers constitute a �trusted
computing base� (TCB), while code producers are untrusted.

The code consumer first publishes a safety policy (number 1 in the figure) that defines pre-
cisely what behavioral properties must be satisfied by binary code if it is to be deemed trust-
worthy. Safety here is a term of art: it refers to a class of behaviors roughly equivalent to
�condition X (a bad thing) never happens.� The safety policy is specified in terms of a verifi-
cation condition generator (VCGen, pronounced �vee-see-jen�) that defines precisely which
proof obligations are generated for each possible (valid) sequence of machine instructions.
The verification conditions (VCs) are expressed in standard first-order logic extended with
policy-specific terms and rules of inference.

The untrusted producer submits a binary program to a verification condition generator (2 in
the figure) that has been developed by the producer to the specifications of the safety policy,
or possibly supplied by the consumer. The result is a pair consisting of the binary code and a
safety predicate that must be proven true if the code is to be deemed trustworthy.

There are various commercial and academic first-order theorem-proving technologies that
can be used to prove the safety predicate (3). For simple safety properties, fully automated
proof generation was sometimes possible; for more complex safety properties, in particular
those that require the discovery of loop invariants, automation was not always possible, even
in principle. However, it is also important to note that in PCC an important objective is to
shift the burden of establishing trustworthiness from the consumer of code to the producer.

40 CMU/SEI-2005-TR-020

One of the main results of the original Necula and Lee work was to demonstrate an efficient
scheme for encoding proofs of the safety predicate. To this end they exploited the famous
�propositions as types� symmetry, sometimes known as the Curry-Howard isomorphism.
This allows us to define the type of a machine code program to be the proof of a proposi-
tion�the safety predicate. Technicalities aside, archetypal PCC defines an unambiguous en-
coding of proofs of verification conditions, and enables the specification and development of
simple, fast, and efficient proof checkers using mature programming language type-checking
techniques.

The code consumer is presented with a binary program and accompanying proof (4). The
consumer re-derives the verification condition from the binary code (5), and then checks the
validity of the proof versus the code (6). Proof checking is an efficient type-checking algo-
rithm that executes in linear time on the length of the program. Moreover, proof checking is a
one-time cost incurred by the code consumer. In contrast, execution monitors, for example,
must perform repeated runtime checks of program execution, and sandboxing incurs its own
runtime and other costs.

6.6.1.2 Limitations of Archetypal PCC; Related Research

Archetypal PCC established technical feasibility, but also exposed a number of technical
challenges that would severely diminish its prospects of widespread technology adoption. For
summary purposes these can be thought of as comprising two areas of concern: (1) the size of
the trusted computing base; and (2) the expressiveness of certifiable properties and the degree
of automation possible in proving these properties. A brief survey of ongoing work will high-
light how the research community has been addressing these challenges.

Necula has been an advocate of systematic and incremental improvements to archetypal PCC
to improve scale and trust [Schneck 02]. To reduce the size of the TCB, Necula has explored
the modularization of safety policies, including techniques by which the untrusted supplier
can define safety policies and present proof-level justification that the supplied policy implies
(and therefore its proofs will satisfy) the code consumer�s published policy [Necula 01a,
Schneck 02b]. A related issue to the size of the TCB is the size of encoded proofs in relation
to the original binary code; experiments showed that a one-to-three order of magnitude blow-
up in the size of the packaged binary could be expected. For small devices or limited band-
width communication, this could be problematic (granted, these are special cases). Necula
has also demonstrated the use of test oracles whereby the consumer must generate rather than
check safety proofs, but the untrusted supplier can supply arbitrarily detailed hints on how to
re-construct the proof [Necula 01].

A more radical PCC agenda called �foundational PCC� has been proposed by Appel and
Felty [Appel 00, 01]. In brief, the technical agenda of foundational PCC is to achieve an ab-
solute minimal TCB by developing complete semantic specification of machine code in
higher-order (typed lambda) logic. This approach has the virtue of sidestepping difficult is-
sues concerning how the trustworthiness of the safety policies themselves can be established.

CMU/SEI-2005-TR-020 41

In archetypal PCC they are supplied by fiat. In foundational PCC, safety policies are regarded
as lemmas to be proven in a more general and primitive, foundational logic; this logic, in
turn, relies only on the foundations of mathematics. While there are many technical chal-
lenges also posed by foundational PCC, the theory has been demonstrated in many practical
application settings by Zhong Shao [Dachuan 04, Zhong 02].

While shrinking the TCB for PCC is essential to realizing the value of proof-level trust in
binaries, more immediate and practical concerns for the transition of this technology to prac-
tice is the expressiveness of the claims that can be proven about binary code, and the degree
to which the construction of proofs can be automated. Significant progress in the area of cer-
tifying software model checking offers a promising avenue to make progress on both con-
cerns [Peled 01, Namjoshi 01, Henzinger 02]. Model checking is a fully automated verifica-
tion procedure that works by exhaustively searching finite models of systems. In some cases,
model checkers are able to verify safety properties (something bad never happens) and live-
ness properties (something good eventually happens). This offers both the automation and
expressiveness needed for transition. Certifying model checkers provide proof certificates as
�witnesses� to satisfied properties; conventional model checkers typically only supply wit-
nesses for failures in the form of counterexamples to claims.

6.6.2 Prototype Certifying Model Checker
A software model checking technology was jointly developed by the SEI and Carnegie Mel-
lon for the express purpose of verifying component software [Chaki 04a, Chaki 04b]. This
technology uses predicate abstraction and counterexample-guided abstraction refinement to
automate the extraction of conservative finite-state models of potentially infinite-state soft-
ware written in C. Because this technology was designed to model check software directly,
rather than indirectly through specialized specification languages (as with most other model
checkers), this seemed a good point of departure.

In this research we enhanced the model checker to generate proof certificates of verified
safety claims. The novelty of our approach is the use of the Boolean satisfiability (SAT)-
solving technology ZCHAFF [Moskewicz 01] to generate proof certificates. Unsatisfiability
is the dual of validity. We show that a formula A is valid (i.e., always true) by proving that ¬A
is unsatisfiable. ZCHAFF was particularly useful because it generates the �UNSAT core,�
that is, the subformula whose unsatisfiability ensures the unsatisfiability of ¬A as a whole,
and hence proves the validity of A. Hence, only this unsatisfiable subformula is needed to
generate the proof certificate, and this is what accounts for the dramatic reduction in the size
of the proof certificate. This pioneering use of SAT solving for certifying model checking
produced dramatic results in reducing the size of proof certificates up to five orders of magni-
tude when compared with the proof certificates generated by conventional theorem-proving
technology (Table 6-1). Chaki has documented the technical details of these results [Chaki
05].

42 CMU/SEI-2005-TR-020

This result demonstrates a practical enhancement of model-checking technology. Previously,
model checkers produced witnesses to failed verification claims (�counterexamples�), but did
not produce objective evidence that a claim was satisfied. By providing a proof certificate of
the verified claim, we effectively remove the model checker�itself a complex piece of soft-
ware�from the trusted computing base. That is, the certificate can be checked and trusted
even if the model checker is itself not trusted.

Table 6-1: Comparison of Proof Certificate Size SAT vs. Conventional Theorem
Provers

6.6.3 Separation Logic for Predicate Abstraction
Predicate abstraction and counterexample-guided abstraction refinement have become de
rigor for software model checking. Each of these technologies relies fundamentally on some
variant of Hoare logic to define the execution semantics of program statements. However,
Hoare logic has limited usefulness in the presence of shared data structures and aliasing. In
these situations the compositional nature of the logic breaks down. This presents two alterna-
tives to developers of model-checking technology: (1) sidestep the issue by concentrating on
verification of properties that are not dependent on data and aliasing; or (2) use pre-
processing technology that can detect and possibly eliminate aliasing. The first alternative

CMU/SEI-2005-TR-020 43

limits the effective range of the technology, the second introduces the potential for unsound
results�which is at variance with the objective of certifying model checking.

Magill and Nanevski have, under the partial support of this SEI research, investigated the use
of Reynolds�s separation logic as a basis for predicate abstraction [Reynolds 02]. Separation
logic is a substructural logic that can be used to reason about finite resources�such as the
properties of memory heaps and pointer aliasing. Magill and Nanevski have developed a
proof theory for a subset of separation logic sufficient to reason about non-trivial pointer
properties programs. Technical details on this work have been documented in [Magill 05]. If
this innovative result can be generalized to the C language (and there are no technical reasons
to think otherwise), then certifying model checkers such as those developed by the SEI could
be parameterized by logical systems specifically adapted to the properties of interest.

6.7 References
URLs are valid as of the publication date of this document.

[Appel 00] Appel, A. & Felty, A. �A Semantic Model of Types and Machine
Instructions for Proof-Carrying Code.� Annual Symposium on Prin-
ciples of Programming Languages. Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. Boston, MA, 2000: 243-253.

[Appel 01] Appel, A. �Foundational Proof-Carrying Code.� 16th Annual IEEE
Symposium on Logic in Computer Science (LICS'01). June 2001.

[Chaki 04a] Chaki, Sagar; Clarke, Edmund; Groce, Alex; Jha, Somesh; & Veith,
Helmut. �Modular Verification of Software Components in C.�
IEEE Transactions on Software Engineering (TSE), 30(6): 388�402,
June 2004.

[Chaki 04b] Chaki, S.; Clarke, E.; Ouaknine, J.; Sharygina, N.; & Sinha, N.
�State/Event-Based Software Model Checking,� 128-147. Inte-
grated Formal Methods 4th International Conference (IFM 2004)
(in Lecture Notes in Computer Science [LNCS], volume 2999).
Canterbury, Kent, UK, April 4-7, 2004. Berlin, Germany: Springer-
Verlag, 2004.

44 CMU/SEI-2005-TR-020

[Chaki 05] Chaki, Sagar. �SAT-Based Software Certification.� In submission.

[Dachuan 04] Dachuan, Yu & Zhong, Shao. Verification of Safety Properties for
Concurrent Assembly Code. Proceedings of the 2004 ACM
SIGPLAN International Conference on Functional Programming
(ICFP’04). Snowbird, Utah, September 2004, 175-188.

[Henzinger 02] Henzinger, Thomas; Jhala, Ranjit; Majumdar, Rupak; Necula,
George; Sutre, Gregoire; & Weimer, Westley. �Temporal Safety
Proofs for Systems Code.� Proceedings of the 14th International
Conference on Computer Aided Verification (CAV ’02). Copenha-
gen, July 2002.

[Magill 05] Magill, S.; Nanevski, A.; Clarke, E.; & Lee, P. �Inferring Invariants
in Separation Logic for Imperative List-Processing Programs.� In
submission.

[Moskewicz 01] Moskewicz, Matthew W.; Madigan, Conor F.; Zhao, Ying; Zhang,
Lintao; & Malik, Sharad. Chaff: Engineering an Efficient SAT
Solver. Proceedings of the 38th Design Automation Conference,
(DAC 2001), Las Vegas, NV, June 18-22, 2001. ACM 2001, 530�
535.

[Namjoshi 01] Namjoshi, Kedar S. �Certifying Model Checkers.� Proceedings of
the 14th International Conference on Computer Aided Verification
(CAV ’01). Lecture Notes In Computer Science, Vol. 2404. London,
UK, Springer-Verlag, 2001.

[Necula 96a] Necula, G. & Lee, P. �Safe Kernel Extensions Without Run-Time
Checking.� Proceedings of the USENIX 2nd Symposium on OS
Design and Implementation (OSDI �96), Oct. 28-31, 1996, Seattle,
WA, 229-243.

[Necula 97] Necula, G. �Proof-Carrying Code.� Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Paris, France, 15-17 January 1997. ACM Press, New York,
1997, 106-119.

[Necula 01a] Necula, G. �A Scalable Architecture for Proof-Carrying Code.� In-
vited paper at the Fifth International Symposium on Functional and
Logic Programming, Tokyo, March 2001.

[Necula 01b] Necula, G.C. & Rahul, S.P. �Oracle-Based Checking of Untrusted
Software.� SIGPLAN Notices 36, No. 3 (March 2001): 142-54.

CMU/SEI-2005-TR-020 45

[Peled 01] Peled, Doron & Zuck, Lenore. �From Model Checking to a Tempo-
ral Proof.� Proceedings of SPIN 2001. Lecture Notes in Computer
Science, Vol. 2057. Springer, Berlin Heidelberg New York, 2001.

[Schneck 02a] Schneck, R. & Necula, G. �A Gradual Approach to a More Trust-
worthy, yet Scalable, Proof-Carrying Code.� Proceedings of the
18th International Conference on Automated Deduction (CADE
’02), Copenhagen, Denmark, July 27-30, 2002. Lecture Notes in
Computer Science 2392, Springer, 2002.

[Schneck 02b] Schneck, R. & Necula, G. �Proof-Carrying Code with Untrusted
Proof Rules.� Proceedings of the 2nd International Software Secu-
rity Symposium. November 2002.

[Reynolds 02] Reynolds, John C. �Separation Logic: A Logic for Shared Mutable
Data Structures.� Proceedings of the 17th Annual IEEE Symposium
on Logic in Computer Science (LICS 2002). Copenhagen, Denmark,
July 2002, 55�74.

[Zhong 02] Zhong, Shao. �A Type System for Certified Binaries.� Proceedings
of the 29th SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. Portland, OR, January 16-18, 2002. ACM
SIGPLAN Notices 37(1), January 2002, 217-232.

46 CMU/SEI-2005-TR-020

7 Verification of Evolving Software
via Component Substitutability Analysis
Sagar Chaki, Edmund Clarke, Natasha Sharygina, Nishant Sinha

7.1 Introduction
Correctness of computer software is critical in today�s information society. This is especially
true of software that runs on computers embedded in our transportation and communication
infrastructure. Examples of serious software errors are easy to find. For instance, in 1997 the
propulsion system of the Aegis missile cruiser USS Yorktown failed for more than two hours
because of a software bug [Slabodkin 98]. The cause turned out to be a division by zero
within a database system, which resulted in an exception and crashed all computer consoles
and terminal units. The software of the USS Yorktown operated on a network of Windows NT
machines and was quite complex, consisting of several million of lines of C code.

Another instance is the development of the F/A-22 as part of the Joint Strike Fighter pro-
gram. The project was delayed multiple times, often because the software was not ready. Pi-
lots often had to reboot computers while in the air [Nellemann 94]. The F/A-22 has about 2.5
million lines of software written in Ada. This number is expected to rise to 6 million lines of
C/C++ code on the F-35.

Computer software also plays an important role in other parts of our infrastructure. On Au-
gust 14, 2003, a blackout affected more than 50 million people in large areas on the U.S. east
coast, causing estimated damage between $4 billion and $10 billion [USCPSOTF 04]. While
the blackout was triggered by trees hitting local power transmission lines, it was a software
bug that made it devastating. A bug in GE Energy�s XA/21 power control system allowed the
blackout to spread. The software had been in use since 1990, but the bug had never before
become apparent. The flaw was discovered by an audit of more than 4 million lines of C/C++
code after the blackout and was identified as a �race condition.�

Programs in imperative languages such as C or C++ are executed line-by-line in what is
called the thread of control. It is tempting to hope that a line-by-line inspection of the code,
following this thread of control, will uncover all the flaws in a program. The problem is that
complex systems have many software components running in parallel, so that there are many
different threads of control that run simultaneously. While one of these threads may currently
be executing some statement in its program, another thread with exactly the same program,

CMU/SEI-2005-TR-020 47

may be executing an entirely different line of code. Consequently, in the presence of multiple
threads, one has to consider any combination of program lines the threads can execute.

Thread A Thread B

1 while(x!=0) skip; 1 while(x!=0) skip;
2 x=1; 2 x=2;
3 3

Figure 7-1: A Small Program with Two Threads of Control

The state of the program is the location of the control in each thread, and the values of the
program variables. In order to discover flaws, it is necessary to explore the possible states of
the program. To illustrate the large number of states that concurrency can cause, consider the
small program in Figure 7-1. It has one variable x, which is initialized with zero. It has two
threads A and B of control, and only four lines of code in total. The first line in both threads
simply idles until x becomes zero. The second line set x to 1 or 2, respectively. Despite its
tiny size, the program has 10 reachable states. The blowup is due to the different combina-
tions of program locations in the two threads A and B. Thus, a manual search for errors in
large concurrent programs is infeasible.

Model checking [Clarke 81, Clarke 99] is an automated technique for exploring all the states
of a system. Introduced in 1981, it has become a standard verification technique in the hard-
ware industry. It has been successfully used to find bugs in circuitry that would have been
hard to find by inspection.

Model checking has the potential to produce major enhancements in the reliability and ro-
bustness of software as well. The basic idea of software model checking is to explore all the
states of the software system systematically. The states are checked for errors. Such an error
may be division by zero as in the case of the USS Yorktown, a race condition as in the case of
GE�s XA/21, or a violated assertion. Once such an erroneous state is found, it can be reported
to the programmer together with a counterexample, that is, an error trace, that demonstrates
the flaw. Counterexamples can be very helpful for understanding the nature of the error and
fixing it.

However, the effectiveness of model checking such systems is severely constrained by the
state space explosion problem, that is, by the sheer number of states a program can be in. If
there are too many states, it becomes impossible to explore all of them, even on a powerful
computer.

Much of the research in this area is therefore targeted at reducing the state-space of the model
used for verification. One principal method in state space reduction of software systems is
abstraction. Abstraction techniques reduce the program state space by generating a smaller set
of states in a way that preserves the relevant behaviors of the system. Abstractions are most
often performed in an informal, manual manner, and require considerable expertise.

48 CMU/SEI-2005-TR-020

Manual abstraction is error-prone, too. The person performing the abstraction will often cap-
ture the intended behavior when abstracting, and not the behavior of the actual code, and
thus, could hide a bug. Industrial applications of model checking therefore favor automated
ways to compute the abstract model. One such method, called predicate abstraction [Graf 97,
Colon 98], has proven to be particularly successful when applied to large software programs.
We exploited predicate abstraction while developing a solution to a problem of establishing
correctness of evolving systems.

The other principal approach in reducing the state-space of the verifiable model is composi-
tional reasoning. Compositional reasoning partitions verification into checks of individual
modules, while the global correctness of the composed system is established by constructing
a proof outline that exploits the modular structure of the system. We used the assume-
guarantee style of compositional reasoning [Pnueli 85] to support verification of evolved
systems.

7.2 Model Checking
In formal verification, a system is modeled mathematically, and its specification (also called a
claim in model checking) is described in a formal language. When the behavior in a system
model does not violate the behavior specified in a claim, the model satisfies the specification.
Model checking [Clarke 82] is a fully automated form of formal verification that uses algo-
rithms that check whether a system satisfies a desired claim through an exhaustive search of
all possible executions of the system. The exhaustive nature of model checking renders the
typical testing question of adequate coverage unnecessary.

Model checking is a technique for verifying finite-state concurrent systems. One benefit of
restricting ourselves to finite-state systems is that verification can be performed automati-
cally. Given sufficient resources, model checking always terminates with a yes or no answer.
Moreover, it can be implemented by algorithms that have reasonable efficiency and that can
be run on moderate-sized machines.

Although the restriction to finite-state systems may seem to be a major disadvantage, model
checking is applicable to several very important classes of systems [Clarke 99]. Hardware
controllers are finite state systems, as are many communication protocols. Software, which is
not finite-state, may still be verified if variables are assumed to be defined over finite do-
mains. This assumption does not restrict the applicability of model checking because many
interesting behaviors of the software systems can be specified with finite-state models. For
example, systems with unbounded message queues can be verified by restricting the size of
the queues to a small number like two or three.

In classical model checking, systems are modeled mathematically as state transition systems
and claims are specified using temporal logic [Pnueli 97, Clarke 86]. Temporal logic is used
to define formulas that describe system behavior over time, where the propositions of the
logic are behaviors of interest involving state information (current state or values of vari-

CMU/SEI-2005-TR-020 49

ables) or events. Temporal logic formulas combine such propositions with temporal operators
to describe interesting patterns of propositions over time, such as

• Whenever X is greater than Y, Z must also be greater than Y.

• Some invariant (e.g., mutual exclusion with respect to some resource) always holds once
initialization is complete.

• A component can only issue requests during an allowed interval (as bounded by events
granting and taking away permission).

Temporal logic model checking is extremely useful in verifying the behavior of systems
composed of concurrent processes or interacting nondeterministic sequential tasks. Concur-
rency errors (as well as errors caused by the nondeterministic execution of actions) are
among the most difficult to find by testing because they tend to be nonreproducible.

7.3 The Process of Model Checking
Model checking involves the following steps:

4. The system is modeled using the description language of a model checker, producing a
model M.

5. The claim to check is defined using the specification language of the model checker,
producing a temporal logic formula φ .

6. The model checker automatically checks whether M =φ satisfies.

The model checker checks all system executions captured by the model and outputs the an-
swer yes if the claim holds in the model (M) and the answer no otherwise. When a claim is
not satisfied, most model checkers produce a counterexample of system behavior that causes
the failure. A counterexample defines an execution trace that violates the claim. Counterex-
amples are one of the most useful features of model checking, as they allow users to quickly
understand why a claim is not satisfied.

7.4 Current Research in Software Model Checking
Model checking is efficient in hardware verification, but applying it to software is compli-
cated by several factors, ranging from the difficulty of modeling computer systems (because
of the complexity of programming languages as compared to hardware description lan-
guages) to difficulties in specifying meaningful claims for software using the usual temporal
logical formalisms of model checking. The most significant limitation, however, is the state
space explosion problem (which applies to both hardware and software), whereby the com-
plexity of model checking becomes prohibitive.

50 CMU/SEI-2005-TR-020

State space explosion results from the fact that the size of the state transition system is expo-
nential in the number of variables and concurrent units in the system. When the system is
composed of several concurrent units, its combined description may lead to an exponential
blowup as well. The state space explosion problem is the subject of most model checking
research.

The following is the list of the state-space reduction techniques commonly used during veri-
fication of software.

• Compositional reasoning. Verification is partitioned into checks of individual modules
while the global correctness of the composed system is established by constructing a
proof outline that exploits the modular structure of the system.

• Abstraction. A smaller abstract system is constructed such that the claim holds for the
original system if it holds for the abstract system.

• Counterexample-guided abstraction refinement. Abstracted systems are refined itera-
tively using information extracted from counterexamples until an error is found or it is
proven that the system satisfies the verification claim.

7.4.1 Compositional Reasoning
Because model checking was created for verifying hardware systems and since most hard-
ware designs have a natural division into modules, the extension of model checking to larger
designs was accomplished by taking a divide-and-conquer approach. Under the approach, we
decompose the verification claim of the system into a set of local claims of the system mod-
ules and verify them separately. The compositional approach aims to establish whether for
given systems M1, M2 and a claim T, the composed system satisfies T (written M1 || M2 |=
T).

A naive compositional approach proceeds by executing the following steps: (1) M1 |= T and
(2) M2 |= T, and concludes by proofs that M1 || M2 |= T. Though this rule is sound in theory,
it is often not useful in practice�both M1 and M2 usually behave like T only in a suitable
environment. To solve this problem, the compositional principle can be strengthened to an
assume-guarantee principle [Abadi 95, Alur 96, Clarke 89, Kurshan 95, McMillan 97]: in
order to check M |= T, it suffices to check both M1 || T2 |= T1 and M2 || T1 |= T2. This obliga-
tion uses the local specifications T1, T2 as the constraining environment (also called assump-
tions) with regard to the behavior of M2, M1 taken in isolation from M1, M2 respectively. In
general, for a system composed of multiple modules, assume-guarantee reasoning succeeds
as long as it can be shown that each system component Mi satisfies a corresponding specifica-
tion component Ti under a suitable constraining environment.

CMU/SEI-2005-TR-020 51

7.4.2 Abstraction
Abstraction is one of the principal complexity reduction techniques [Ball 01, Clarke 92, Kur-
shan 94]. Abstraction techniques reduce the state space by mapping the concrete set of actual
system states to an abstract set of states that preserve the actual system�s behavior. Abstrac-
tions are usually performed in an informal, manual manner and require considerable exper-
tise. Predicate abstraction [Graf 97, Colon 98] is one of the most popular and widely applied
methods for the systematic abstraction of systems. It maps concrete data types to abstract data
types through predicates over the concrete data. However, the computational cost of the
predicate abstraction procedure may be too high, making generation of a full set of predicates
for a large system infeasible.

In practice, the number of computed predicates is bounded, and model checking is guaranteed
to deliver sound results within this bound. The bound limit is increased once errors (if any)
are found within the bound and fixed. Under this approach, software systems are rendered
finite by restricting variables to finite domains. As mentioned earlier, bounded model check-
ing does not seriously restrict the applicability of model checking because many interesting
behaviors of software systems can be specified using bounded finite-state models.

The abstract program is created using existential abstraction [Clarke 92]. This method de-
fines the transition relation of the abstract program so it is guaranteed to be a conservative
over-approximation of the original program, with respect to the set of given predicates. The
use of a conservative abstraction, as opposed to an exact abstraction, produces considerable
reductions in the state space. The drawback of the conservative abstraction is that when
model checking of the abstract program fails, it may produce a counterexample that does not
correspond to a concrete counterexample. Such a counterexample is usually called spurious.
When a spurious counterexample is encountered, refinement is performed by adjusting the set
of predicates in a way that eliminates it.

7.4.3 Counterexample-Guided Abstraction Refinement
(CEGAR)

Though conservative abstraction procedures�which ensure that if a claim holds for the ab-
stract system, it also holds for the original system�are typically used, any form of abstrac-
tion may introduce behaviors not found in the concrete system. Counterexamples from model
checking the abstract system are often used to detect unrealistic behaviors and refine the sys-
tem. Repeatedly refining the abstractions, however, may introduce additional behaviors that
result in state space explosion during the model checking phase. These drawbacks�coupled
with the potential effectiveness of abstraction methods�motivate research into targeted ab-
stractions (i.e., control abstraction, loop abstraction, and so forth), which can result in more
accurate abstract systems.

52 CMU/SEI-2005-TR-020

Figure 7-2: The CEGAR Framework

The abstraction refinement process has been automated by the CEGAR paradigm [Kurshan
94, Ball 00, Clarke 00, Das 01]. The CEGAR framework is shown in Figure 7-2: one starts
with a coarse abstraction (for example, an abstraction of a C program). If an error-trace re-
ported by the model checker is not realistic, the error trace is used to refine the abstract pro-
gram, and the process proceeds until no spurious error traces can be found. The actual steps
of the loop follow the abstract-verify-refine paradigm and depend on the abstraction and re-
finement techniques used. The steps are described below in the context of predicate abstrac-
tion.

1. program abstraction. Given a set of predicates, a finite state model is extracted from
the code of a software system, and the abstract transition system is constructed.

2. verification. A model checking algorithm is run to check whether the model created by
applying predicate abstraction satisfies the desired behavioral claim ϕ. If the claim
holds, the model checker reports success (ϕ is true), and the CEGAR loop terminates.
Otherwise, the model checker extracts a counterexample, and the computation proceeds
to the next step.

3. counterexample validation. The counterexample is examined to determine whether it is
spurious. This examination is done by simulating the (concrete) program using the ab-
stract counterexample as a guide, to find out if the counterexample represents an actual
program behavior. If this is the case, the bug is reported (ϕ is false), and the CEGAR
loop terminates. Otherwise, the CEGAR loop proceeds to the next step.

4. predicate refinement. The set of predicates is changed to eliminate the detected spuri-
ous counterexample and possibly other spurious behaviors introduced by predicate ab-
straction. Given the updated set of predicates, the CEGAR loop proceeds to Step 1.

The efficiency of this process is dependent on the efficiency of the program abstraction and
predicate refinement procedures. While program abstraction focuses on constructing the tran-
sition relation of the abstract program, the focus of predicate refinement is to define efficient
techniques for choosing the set of predicates in a way that eliminates spurious counterexam-

CMU/SEI-2005-TR-020 53

ples. In both areas of research, low computational cost is a key factor since it enables the ap-
plication of model checking to the verification of realistic programs.

This project presented techniques that use efficient abstraction and abstraction refinement
techniques of the CEGAR loop by employing techniques implemented in the Copper model
checker [Chaki 05b]. In this project we presented a solution to the model checking problem
that arises during verification of evolving systems. This solution was originally published by
Chaki [Chaki 05a]. We refer the reader to earlier work by Chaki [Chaki 04b] for details re-
garding the Copper abstraction and refinement procedures.

7.5 Verification of Evolving Software
Successfully transitioning model checking technology has proven to be a challenging task.
While the benefits of successful model checking are clear, there are several barriers to suc-
cessful transition. Principally, model checking has serious scalability problems and the tech-
niques are difficult for software engineers to use.

A major short-coming in most model checking research is the failure to consider how to
make model checking use routine throughout various stages of software development. Soft-
ware inevitably evolves as designs take shape, requirements change, and bugs are discovered
and fixed. Model checking is useful at each such point, but the current state of model check-
ing requires that software verification of the entire system be performed anew each time. The
amount of time and effort required to verify an entire system can be considerable and repeat-
ing the exercise after each change, no matter how small, would likely discourage use.

This report presents results of considering ways to reduce the effort of subsequent verifica-
tions. In particular, by exploiting the results of previous verification efforts and focusing only
on the portions of the system that have changed (components), model checking can be incor-
porated into development processes in a much less intrusive or cumbersome manner.

We present techniques that, while not affecting the initial model checking effort, reduce by
orders of magnitude the effort to keep analysis results up-to-date with evolving system de-
sign. The presented techniques are decision procedures that determine if all system correct-
ness properties previously established by model checking remain valid for the new version of
the system.

The key idea is to determine automatically if these properties hold for the new system with-
out repeating each of the individual verification checks. We will present a verification method
[Chaki 05a] that focuses on system components that have changed during the evolution of
software and determines if all behaviors of the original system are preserved in the new ver-
sion of the system. Moreover, whenever it is found that behaviors are not preserved, when-
ever possible our technique will automatically provide feedback to developers showing how
to improve the components.

54 CMU/SEI-2005-TR-020

Figure 7-3: Comparison of Times Required for Original Verification (Torig) and Verifi-
cation on Upgrade (Tug) by DynamicCheck

7.6 Implementation and Experimental Evaluation
We implemented the dynamic component substitutability check procedures in the COPPER
model checker. The tool includes a front end for parsing and constructing control-flow graphs
from C programs. Further, it is capable of (1) model checking properties on programs based
on automated may-abstraction (existential abstraction), and (2) it allows compositional verifi-
cation by employing learning-based automated assume-guarantee reasoning. We reused the
above features of COPPER in the implementation of the substitutability check. The tool inter-
face was modified so that a collection of components and corresponding upgrades could be
specified. We extended the learning-based automated assume-guarantee to obtain its dynamic
version, as required in the compatibility check. This involved keeping multiple learner in-
stances across calls to the verification engine and implementing algorithms to validate multi-
ple previous observation tables in an efficient way during learning. We have also imple-
mented the under-approximation generation algorithms for carrying out containment check
on small program examples. This involved procedures for implementing must-abstractions
from C code using predicates obtained from C components. The automated refinement pro-
cedures are still under implementation and would enable containment check of larger bench-
marks.

We validated the component substitutability framework while verifying upgrades of a
benchmark provided to us by our industrial partner, ABB Inc. The benchmarks consist of
seven components that together implement an interprocess communication (IPC) protocol.
The combined state-space is over 106.

We used a set of properties describing functionality of the verified portion of the IPC proto-
col. We used upgrades of the write-queue (ipc1) and the ipc-queue (ipc2 and ipc3) compo-
nents. The upgrades had both missing and extra behaviors compared to their original ver-
sions. We verified two properties (P1 and P2) before and after the upgrades. We also verified
the properties on a simultaneous upgrade (ipc4) of both the components. P1 specifies that a
process may write data into the ipc-queue only after it obtains a lock for the corresponding
critical section. P2 specifies an order in which data may be written into the ipc-queue. Table 1
shows the comparison between the time required for initial verification of the IPC system
with the time taken by DynamicCheck for verification of upgrades. In Figure 7-3 #Mem.

CMU/SEI-2005-TR-020 55

Queries denotes the total number of membership queries made during verification of the
original assembly.

We observed that the previously generated assumptions in all the cases were sufficient to
prove the properties on the upgraded system also. Hence, the compatibility check succeeded
in a small fraction of time (Tug) as compared to the time for compositional verification (Torig)
of the original system.

7.7 Related Work
Related projects often impose the restriction that every behavior of the new component must
also be a behavior of the old component. In such a case the new component is said to refine
the old component. For instance, de Alfaro et al. [de Alfaro 01, Chakrabarti 02] define a no-
tion of interface automaton for modeling component interfaces and show compatibility be-
tween components via refinement and consistency between interfaces. However, automated
techniques for constructing interface automata from component implementations are not pre-
sented. In contrast, our approach automatically extracts conservative DLA models (which are
similar to finite state interface automata) from component implementations. Moreover, we do
not require refinement among the old components and their new versions.

Ernst et al. [McCamant 04] suggest a technique for checking compatibility of multi-
component upgrades. They derive consistency criteria by focusing on input/output compo-
nent behavior only and abstract away the temporal information. Even though they state that
their abstractions are unsound in general, they report success in detecting important errors. In
contrast, our abstractions preserve temporal information about component behavior and are
always sound. They also use a refinement-based notion on the generated consistency criteria
for showing compatibility.

The application of learning is extremely useful from a pragmatic point of view since it is
amenable to complete automation, and is gaining rapid popularity [Groce 02] in formal veri-
fication. The use of learning for automated assume-guarantee reasoning was proposed origi-
nally by Cobleigh et al. [Cobleigh 03]. The use of learning along with predicate abstraction
has also been applied in the context of interface synthesis [Alur 05] and various types of as-
sume-guarantee proof rules for automated software verification [Chaki 04a].

This work is related to our earlier project [Chaki 04c] that solves the component substitutabil-
ity problem in the context of verifying individual component upgrades. A major improvement
of the current work is that it is aimed at verifying the component substitutability in the pres-
ence of simultaneous upgrades of multiple components. Another distinction of this work is
that it provides an innovative dynamic assume-guarantee reasoning framework for the com-
patibility check. The dynamic nature of the compatibility check allows reusing previously
computed assumptions to prove or disprove the global properties of the updated system.

56 CMU/SEI-2005-TR-020

Additionally, this paper gives a new solution to the containment check problem that Chaki
presented [Chaki 04c]. In our earlier work, the containment step is solved using learning
techniques for regular sets and handles finite-state systems only. In contrast, the new ap-
proach is extended to handle infinite-state C programs. Moreover, this paper defines a new
technique based on simultaneous use of over and under approximations obtained via existen-
tial and universal abstractions.

7.8 Conclusion
The SEI independent research and development project on the verification of evolving soft-
ware via component substitutability analysis addressed a critical and vital problem of compo-
nent substitutability analysis and provided a solution that consists of two phases: containment
and compatibility checks. The compatibility check performs compositional reasoning with the
help of a dynamic regular language inference algorithm and a model checker. Our experi-
ments confirm that the dynamic approach is more effective than complete re-validation of the
system after an upgrade. The containment check detects behaviors that were present in each
component before but not after the upgrade. These behaviors are used to construct useful
feedback to the developers. We observed that the order of components used to discharge the
assume-guarantee rules has a significant impact on the algorithm runtimes and hence needs
investigation.

The component substitutability analysis has been implemented in a Copper tool [Chaki 05b]
that can be invoked within the ComFoRT framework. The verification framework was vali-
dated on an industrial benchmark provided by our industrial partner, ABB Ltd., and demon-
strated encouraging results.

7.9 References
URLs are valid as of the publication date of this document.

[Abadi 95] Abadi, M. & Lamport, L. �Conjoining Specifications.� ACM
Transactions on Programming Languages and Systems (TOPLAS),
Vol. 17, No. 3 (May 1995).

[Alur 96] Alur, R. & Henzinger, T. �Reactive Modules, 207-218. Proceedings
of the 11th Annual IEEE Symposium on Logic in Computer Science.
New Brunswick, NJ, 27-30 July 1996. IEEE Computer Society
Press, 1996.

[Alur 05] Alur, R.; Cerny, P.; Gupta, G.; Madhusudan, P.; Nam, W.; &
Srivastava, A. �Synthesis of Interface Specifications for Java
Classes.� Proceedings of the 32nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. Long Beach,

CMU/SEI-2005-TR-020 57

http://www.acm.org/
http://www.acm.org/sigplan
http://www.acm.org/sigact

CA, Jan. 12-14, 2005.

[Angluin 87] Angluin, D. �Learning Regular Sets from Queries and Counterex-
amples.� Information and Computation, Volume 75, 2 (1987): 87�
106.

[Ball 00] Ball, T. & Rajamani, S. �Boolean Programs: A Model and Process
for Software Analysis (2000-14).� Microsoft Research, February
2000.

[Ball 01] Ball, T.; Majumdar, R.; Millstein, T.; & Rajamani, S. �Automatic
Predicate Abstraction of C Programs.� Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Language Design and
Implementation. Snowbird, UT, 2001.

[Chaki] Chaki, S. �Learning Doubly Labeled Automata Using Queries and
Counterexamples.� Unpublished manuscript. Available at
http://www.sei.cmu.edu/staff/chaki/publications/learn-se-trace.pdf.

[Chaki 04a] Chaki, S.; Clarke, E.; Giannakopoulou, D.; & Pasareanu, C. S. Ab-
straction and Assume-Guarantee Reasoning for Automated Soft-
ware Verification (05.02). Research Institute for Advanced Com-
puter Science (RIACS), 2004.

[Chaki 04b] Chaki, S.; Clarke, E.; Groce, A.; Ouaknine, J.; Strichman, O.; &
Yorav, K. �Efficient Verification of Sequential and Concurrent C
Programs.� Formal Methods in System Design Volume 25, Issue 2-3
(September-November 2004): 129-166.

[Chaki 04c] Chaki, S.; Sharygina, N.; & Sinha, N. �Verification of Evolving
Software.� Proceedings of the Third International Workshop on
Specification and Verification of Component-Based Systems. 2004.

[Chaki 05a] Chaki, S.; Clarke, E.; Sharygina, N.; & Sinha, N. �Dynamic Com-
ponent Substitutability Analysis.� Proceedings of the Formal Meth-
ods 2005 Conference, 2005.

[Chaki 05b] Chaki, S.; Ivers, J.; Sharygina, N.; & Wallnau, K. �The ComFoRT
Reasoning Framework.� Lecture Notes in Computer Science, Vol-
ume 3576. Springer, 2005

58 CMU/SEI-2005-TR-020

http://www.sei.cmu.edu/staff/chaki/publications/learn-se-trace.pdf

[Chakrabarti 02] Chakrabarti, A.; de Alfaro, L.; Henzinger, T. A.; Jurdzinski, M.; &
Mang, F. Y. C. �Interface Compatibility Checking for Software
Modules,� 428�441. Proceedings of the 14th International Confer-
ence on Computer Aided Verification. 2002. Lecture Notes in Com-
puter Science, Volume 2404,.

[Clarke 81] Clarke, E. M. & Emerson, E. A. �Synthesis of Synchronization
Skeletons for Branching Time Temporal Logic.� Logic of Pro-
grams: Workshop. Springer-Verlag, 1981.

[Clarke 82] Clarke, E. M. & Emerson, E. A. �Design and Synthesis of Synchro-
nization Skeletons Using Branching Time Temporal Logic.� Logic
of Programs Workshop, 1982.

[Clarke 86] Clarke, E. M.; Emerson, E. A.; & Sistla, A. �Automatic Verification
of Finite-State Concurrent Systems Using Temporal Logic Specifi-
cations.� ACM Transactions on Programming Languages and Sys-
tems, 1986.

[Clarke 89] E. Clarke, D. L. & McMillan, K. �Compositional Model Check-
ing,� 353-362. Proceedings of the Fourth Symposium on Logic in
Computer Science. IEEE Computing Society Press, 1989.

[Clarke 92] Clarke, E.; Grumberg, O.; & Long, D. �Model Checking and Ab-
straction.� Proceedings of the 19th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 1992.

[Clarke 99] Clarke, E.; Grumberg, O.; & Peled, D. Model Checking. MIT Press,
December 1999.

[Clarke 00] Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; & Veith, H. �Counter-
example-Guided Abstraction Refinement.� Journal of the ACM
(JACM), Volume 50, Issue 5 (September 2003): 752-794.

[Cobleigh 03] Cobleigh, J. M.; Giannakopoulou, D.; & Pasareanu, C. S. �Learning
Assumptions for Compositional Verification.� Tools and Algorithms
for Construction and Analysis of Systems (in Lecture Notes in
Computer Science [LNCS], volume 2619. Springer-Verlag, 2003.

[Colon 98] Colon, M. & Uribe, T. �Generating Finite-State Abstractions of Re-
active Systems Using Decision Procedures.� Computer Aided Veri-
fication. 1998: 293�304.

[Das 01] Das, S. & Dill, D. �Successive Approximation of Abstract Transi-
tion Relations.� Proceedings of the 16th Annual IEEE Symposium

CMU/SEI-2005-TR-020 59

on Logic in Computer Science (LICS). IEEE, 2001.

[de Alfaro 01] de Alfaro, L. & Henzinger, T. A. �Interface Automata.� Proceedings
of the Ninth Annual Symposium on Foundations of Software Engi-
neering. 2001.

[DoD 05] U.S. Department of Defense. F-35 Joint Strike Fighter Program.
http://www.jsf.mil/ (2005).

[Giannakopoulou
02]

Giannakopoulou, D.; Pasareanu, C. S.; & Barringer, H. �Assump-
tion Generation for Software Component Verification.� Proceedings
of the 17th IEEE International Conference on Automated Software
Engineering 2002 (ASE 2002). Edinburgh, Scotland, Sept. 23-27,
2002. IEEE, 2002.

[Graf 97] Graf, S. & Saidi, H. �Construction of Abstract State Graphs with
PVS,� 72�83. Proceedings of the Ninth International Conference on
Computer Aided Verification (CAV’97) (in Lecture Notes in Com-
puter Science [LNCS] volume 1254, Grumberg, O., ed. Springer-
Verlag, 1997.

[Groce 02] Groce, A.; Peled, D.; & Yannakakis, M. �Adaptive Model Check-
ing,� 357�370. Tools and Algorithms for Construction and Analysis
of Systems. Springer-Verlag, 2002.

[Kurshan 94] Kurshan, R. Computer-Aided Verification of Coordinating Proc-
esses: The Automata-Theoretic Approach. Princeton, NJ:Princeton
University Press, 1994.

[Kurshan 95] Kurshan, R. Computer-Aided Verification of Coordinating Proc-
esses. Princeton, NJ: Princeton University Press, 1995.

[McCamant 04] McCamant, S. & Ernst, M. D. �Early Identification of Incompati-
bilities in Multi-Component Upgrades.� Proceedings of the Object-
Oriented Programming, 18th European Conference (ECOOP 2004)
(in Lecture Notes in Computer Science [LNCS], volume 3086.
Oslo, Norway, June 14-18, 2004. Springer, 2004.

[McMillan 97] McMillan, K. �A Compositional Rule for Hardware Design Re-
finement.� Proceedings 9th International Conference on Computer
Aided Verification (CAV'97) (in Lecture Notes in Computer Science
[LNCS] volume 1254. Haifa, Israel, 1997. Springer-Verlag, 1997.

[Nellemann 94] Nellemann, D. �Air Force F-22 embedded computers�, September
1994. http://archive.gao.gov/t2pbat2/152615.pdf.

60 CMU/SEI-2005-TR-020

http://www.jsf.mil
http://archive.gao.gov/t2pbat2/152615.pdf

[Pnueli 85] Pnueli, A. �In Transition from Global to Modular Temporal Reason-
ing About Programs.� Logics and Models of Concurrent Systems.
New York, NY: Springer-Verlag New York, Inc., 1985: 123-144.

[Pnueli 97] Pnueli, A. �The Temporal Logic of Programs,� 46-57. Proceedings
of the 18th IEEE Symposium on Foundations of Computer Science.
Providence, RI, October 31-November 2, 1997. New York, NY:
Institute of Electrical and Electronics Engineers, Inc. (IEEE), 1997.

[Rivest 93] Rivest, R. L. & Schapire, R. E. �Inference of Finite Automata Using
Homing Sequences.� Information and Computation, Volume 103, 2
(1993): 299�347.

[Roscoe 97] Roscoe, A. W. The Theory and Practice of Concurrency. Prentice-
Hall International, 1997.

[Slabodkin 98] Slabodkin, Gregory. �Navy: Calibration flaw crashed Yorktown
LAN.� Government Computer News. Nov. 9, 1998; Vol. 17 No. 30.
Available at http://www.gcn.com/17_30/news/33914-1.html.

[USCPSOTF 04] U.S.-Canada Power System Outage Task Force. Final Report on the
August 14, 2003 Blackout in the United States and Canada. April
2004. https://reports.energy.gov/.

CMU/SEI-2005-TR-020 61

http://www.gcn.com/17_30/news/33914-1.html
https://reports.energy.gov

62 CMU/SEI-2005-TR-020

8 Emerging Technologies and Technology
Trends
Angel Jordan

8.1 Introduction
This is the second report from the Software Engineering Institute (SEI) on emerging tech-
nologies and technology trends in the fields of software engineering and systems engineering.
The first report was published in October 2004 as part of the SEI technical report Results of
SEI Independent Research and Development Projects and Report on Emerging Technologies
and Technology Trends (CMU/SEI-2004-TR-018).

As mentioned in the first report, technology scouting has always been an implicit activity of
the SEI and is embedded in the SEI�s mission of technology transition. Because of the insti-
tute�s small size relative to other research institutions, the SEI applies the most leverage to its
active initiatives, but it also watches for other emerging technologies in the U.S. and interna-
tionally.

In this report as in the first one, we present information about technologies that are pushing
the frontiers of the SEI�s current programs and initiatives, as well as technologies that tran-
scend them. The SEI Independent Research and Development (IR&D) program, described
earlier in this document, is an example of explicit technology scouting at the SEI. The past
activities of the SEI New Frontiers Group, including information collection and dissemina-
tion, are further examples.

As in the first report, we also mention the activities of the International Process Research
Consortium (IPRC). The purpose of the IPRC is to develop a community of practice that
regularly collaborates to examine and codify future process research opportunities and direc-
tions. IPRC members come from all over the world, bringing expertise in process research
and a vision for the trends, challenges, and needs for software-intensive organizations over
the next 5-10 years.

In the first report, we provided descriptions of new or emerging technologies.4 These descrip-
tions included the technologies� purpose and origin. Where possible, we indicated the tech-
nologies� level of maturity and provided information about related trends. A bibliography for

4 More detailed white papers, written by SEI technical staff members, are available for some of

these technologies. To obtain copies, contact SEI Customer Relations at 412-268-5800.

CMU/SEI-2005-TR-020 63

the technology descriptions was provided at the end of the report. The following technologies
were described:

• open grid services architecture

• integrated security services for dynamic coalition management

• model-driven architecture

• service-oriented architecture

• automated lexical and syntactical analysis in requirements engineering

• Q methodology

• emergent algorithms for interoperability

• aspect-oriented software development

• generative programming

• software assurance

• recent advances in intrusion detection systems

• advances in software engineering processes

The technical staff members of the SEI continue to follow closely all of these technologies.

In the section on Advances in Software Engineering Processes we reported in the first report
notable advances and trends as follows, which we repeat here for emphasis.

8.1.1 Reducing Software Defects to Improve Security
It is recognized that defective software is not secure, a position advocated by the SEI and a
few other organizations (e.g., PRAXIS and Cigital), and accepted by the Department of
Homeland Security (DHS) Software Process Subgroup of the Task Force on Security. This
position is supported by the fact that the leading cause of software vulnerabilities is common
defects in software design and implementation (i.e., bugs). Also, tools for developing secure
software, although needed, are not sufficient and address only a small part of the problem.
Formal methods, better processes, and training for software professionals will have more im-
pact and are critically needed. The DHS subgroup made recommendations in this context.
The reader is referred to the first report for a detailed description of these recommendations.

Other trends described in the first report, which have renewed relevance, are:

• use of tabular expressions

• stratified systems theory

• model-based process improvement, including

64 CMU/SEI-2005-TR-020

− deploying Six Sigma, the SEI Team Software Process (TSP) and Personal Software
Process (PSP), and Agile with the Capability Maturity Model Integration (CMMI)
methodology

− increasing use of the Project Management Body of Knowledge (PMBOK) to improve
management competencies. (Project Management as contained in the PMBOK is in
many respects complementary to the methods articulated in Software Improvement
as developed by the SEI and others.)

• increasing efforts to harmonize various systems and software standards. This is another
recognizable trend. Indicators include
− efforts by IEEE to harmonize its standards with ISO and CMMI
− efforts by ISO to harmonize its standards related to quality as well as integrating sys-

tems and software
• wider use of appraisal methods, including more quantification of process improvement

8.1.2 Organization of this Report
After these introductory paragraphs, this report presents a self-contained section with its own
introduction, titled �Technology Scouting of Work at Carnegie Mellon University and Other
Institutions Worldwide Relevant to SEI.� The main report then follows with a section titled
�Technology Scouting in Systems and Software Engineering,� is also a self-contained report
with its own introduction, conclusions, and references.

The main report then follows with a section titled �International Workshops on Software
Process.� Here we report on workshops that are organized by an international community of
software engineers, both from academe and industry worldwide, and that provide forums for
the latest advances in software process improvement. The list of participants and program
organizers reads almost like a �who�s who in software engineering,� even though the pro-
grams are centered mainly on software development processes.

The main report then contains a section titled �Agile Software Development.� Many mem-
bers of the technical staff of the SEI are familiar with the Agile Software Development com-
munity, through the SEI has no presence in that community. Developments there deserve to
be followed because they have an impact on the practice of software engineering and reflect
significant advances in software technology.

Finally, this report presents a section describing another forum on software engineering titled
�International Conferences in Software Engineering.� These conferences provide the vehicle
for presenting the most recent advances in software technology.

The report employs HTML links that the reader can follow to additional details as desired.
These links serve as references in most cases.

CMU/SEI-2005-TR-020 65

8.2 Technology Scouting of Work at Carnegie
Mellon University and Other Institutions World-
wide Relevant to SEI

This section describes work at the Carnegie Mellon University campus (mainly in the School
of Computer Science [SCS]) which is relevant to some of the programs in the Software Engi-
neering Institute. It dwells briefly on some areas within SEI where there is synergy with the
work carried out on campus. In both cases the work described here is believed to be at the
frontier of software technology development. It cites work in other institutions that are doing
related work by leading researchers and, where the information is available, indicates the
state of the art in the field and/or the state of maturity.

In preparation for this section, the author conducted interviews with a number of faculty
members in the School of Computer Science and at the SEI. The interviews at the SEI were
conducted to corroborate the author�s knowledge of some of the fields acquired either before
or during his tenure as Acting SEI Director.

The section contains a number of opinions or judgments by certain individuals, which some-
times are subjective. This is the case, for instance, when statements such as prominent people,
leaders in the field, working at the frontier, etc. are made.

The section often borrows freely from Web sites of institutions, and from personal Web pages
of researchers in universities, and thus the writing style reflects that of the people who are
being quoted. In lieu of references, links to the Web sites or Web pages are given. This allows
the readers of the section to visit the sites at the same time that the reading is done. This is
particularly easy to do if this document is read online in its HTML version or onscreen in its
PDF version, where the hyperlinks have been maintained.

The section starts with a subsection titled �Advances in Software Architecture.� Under this
heading, an innovative project called ArchJava, directed by a faculty member in SCS, is de-
scribed, followed by a brief enumeration of a number of architecture description languages
(ADLs), defined to describe, model, check, and implement software architectures. An enu-
meration of work related to ArchJava follows. The section continues with a subsection on
work on software architecture being done at SCS, at the SEI, and at other universities. It then
follows with a subsection on aspect-oriented programming and aspect-oriented software de-
velopment. The topic that is being watched by SEI members is briefly introduced and is fol-
lowed by a description of an innovative research project led by a faculty member in SCS,
which is attracting the attention of the SEI. In the next subsection, the report describes work
on autonomic application software, a field that is attracting the attention of the software
community internationally, and is relevant to the SEI. A section on verification of autono-
mous systems follows. This work done at SCS is at the frontier of software research and is
the source of a fruitful collaboration between SCS and the SEI. The section proceeds with a
subsection on proof-carrying code, a pioneering work in SCS, which also is the source of col-
laboration between SCS and the SEI. Then the section follows with a brief description of an

66 CMU/SEI-2005-TR-020

innovative project, the Fox Project, also at SCS, that may have an impact on the SEI. The
section culminates with a description of a study being conducted at the National Academies
(with participation of members of Carnegie Mellon), which is to have an impact in the devel-
opment of software technology, and should be observed and followed by the SEI.

8.2.1 Advances in Software Architecture
Software architecture is a field of software engineering and computer science where Carnegie
Mellon, in the School of Computer Science and at the SEI, is at the leading edge in software
technology. At the SEI, the work in software architecture is principally conducted in the
Product Line Systems Program, albeit other programs or initiatives also are engaged in soft-
ware architecture. In SCS the work is done in the Institute of Software Research International
(ISRI) and in the Computer Science Department, which are both in the School of Computer
Science. In this subsection we briefly describe work at Carnegie Mellon that is advancing the
state of the art in software architecture, briefly summarize work at the SEI, and mention other
institutions that are also working at the frontier of the field.

8.2.1.1 ArchJava

This work is pursued at Carnegie Mellon University by Jonathan Aldrich
(http://www.cs.cmu.edu/~aldrich/) and his students. The work originated from a foundation in
programming languages but is centered in software architecture.

In the words of Jonathan Aldrich:

Software architecture describes the structure of a system, enabling more effective
design, program understanding, and formal analysis. However, existing ap-
proaches decouple implementation code from architecture, allowing inconsisten-
cies, causing confusion, violating architectural properties, and inhibiting soft-
ware evolution. ArchJava is an extension to Java that seamlessly unifies software
architecture with implementation, using a type system to ensure that the imple-
mentation conforms to architectural constraints.
(http://archjava.fl id.cs.cm .ed /index.htmlu u u).

The site above includes a downloadable compiler for ArchJava as well as publications de-
scribing the language, a case study, and the theory behind ArchJava. The work originated
with Jonathan Aldrich�s doctoral thesis (Jonathan Aldrich, Using Types to Enforce Archi-
tectural Structure. University of Washington Ph.D. Dissertation, August 2003, available at
http://archjava.fluid.cs.cmu.edu/papers/aldrich-dissertation.pdf.)

Other people whose work relates to Aldrich�s include researchers at the University of Wash-
ington led by David Notkin (http://www.cs.washington.edu/homes/notkin/), a Carnegie Mel-
lon alumnus, who are experts in programming languages.

CMU/SEI-2005-TR-020 67

http://archjava.fluid.cs.cmu.edu/index.html
http://archjava.fluid.cs.cmu.edu/papers/aldrich-dissertation.pdf
http://archjava.fluid.cs.cmu.edu/papers/aldrich-dissertation.pdf
http://www.cs.cmu.edu/~aldrich
http://archjava.flid.cs.cm.ed/index.htmluuu
http://archjava.fluid.cs.cmu.edu/papers/aldrich-dissertation.pdf
http://www.cs.washington.edu/homes/notkin

Related work to ArchJava is incorporated in a number of architecture description languages
(ADLs), defined to describe, model, check, and implement software architectures. Many of
these languages support sophisticated analysis and reasoning or support architecture-centric
development. Some recent ADLs include:

• Wright, which provides a formal basis for architectural description in software design.
This language can be used to provide a precise, abstract meaning to an architectural
specification and to analyze both the architecture of individual software systems and of
families of systems (http://www.cs.cmu.edu/afs/cs/project/able/www/wright/).

• UniCon, an architectural description language whose focus is on supporting the variety
of architectural parts and styles found in the real world and on constructing systems from
their architecture descriptions (http://www.cs.cmu.edu/afs/cs/project/vit/www/unicon/)

• Acme, a simple, generic software ADL that can be used as a common interchange format
for architecture design tools and/or as a foundation for developing new architectural de-
sign and analysis tools (http://www.cs.cmu.edu/~acme/)

• Aesop, which provides a toolkit for rapidly building software architecture design envi-
ronments, specialized for domain-specific architectural styles. It consists of an open tool
integration framework that supports cooperation between Aesop itself and other tools. It
also provides, among other features, a repository for storing, retrieving, and reusing ar-
chitectural design elements (http://www.cs.cmu.edu/afs/cs/project/able/www/aesop).

Other ADLs are C2 (http://www.isr.uci.edu/architecture/c2.html), CUSADL
(http://www.isr.uci.edu/architecture/adl/SADL.html), Darwin (http://www-dse.doc.ic.ac.uk
/Software/), MetaH (http://www.htc.honeywell.com/metah/prodinfo.html), Rapide
(http://pavg.stanford.edu/rapide/), SADL (http://www.csl.sri.com/programs/dsa
/sadl-main.html), and xArch (http://www.isr.uci.edu/architecture/xarch/).

8.2.1.2 Work in software architecture at the Carnegie Mellon School of
Computer Science

Frontier work on software architecture is also conducted in other projects at the School of
Computer Science at Carnegie Mellon incorporated in an umbrella project called the ABLE
Project (http://www.cs.cmu.edu/afs/cs/project/able/www/able.html). ABLE stands for archi-
tecture-based languages and environment.

The ABLE project is concerned with exploring the formal basis for software architecture,
developing the concept of architectural style, and building tools that practicing software ar-
chitects might find useful. The tool development effort has focused on the Aesop system (see
above). The formal work revolves around the Wright language (see above).

Another project under the umbrella of ABLE is titled �Reasoning about Implicit Invocation
Systems� (http://www.cs.cmu.edu/afs/cs/project/able/www/implinvoc/ii.html). It provides a
formal basis for reasoning about systems designed using the implicit invocation architectural

68 CMU/SEI-2005-TR-020

http://www-2.cs.cmu.edu/afs/cs/project/able/www/able.html
http://www-2.cs.cmu.edu/afs/cs/project/able/www/able.html
http://www.cs.cmu.edu/afs/cs/project/able/www/implinvoc/ii.html
http://www.cs.cmu.edu/afs/cs/project/able/www/implinvoc/ii.html
http://www.cs.cmu.edu/afs/cs/project/able/www/wright
http://www.cs.cmu.edu/afs/cs/project/vit/www/unicon
http://www.cs.cmu.edu/~acme
http://www.cs.cmu.edu/afs/cs/project/able/www/aesop
http://www.isr.uci.edu/architecture/c2.html
http://www.isr.uci.edu/architecture/adl/SADL.html
http://www-dse.doc.ic.ac.uk/Software
http://www-dse.doc.ic.ac.uk/Software
http://www.htc.honeywell.com/metah/prodinfo.html
http://pavg.stanford.edu/rapide
http://www.csl.sri.com/programs/dsa/sadl-main.html
http://www.csl.sri.com/programs/dsa/sadl-main.html
http://www.isr.uci.edu/architecture/xarch
http://www.cs.cmu.edu/afs/cs/project/able/www/able.html
http://www.cs.cmu.edu/afs/cs/project/able/www/implinvoc/ii.html

style. It replaces current ad hoc reasoning approaches used by practitioners who use the im-
plicit invocation style with a collection of sound ideas that allow better informal reasoning
about such systems.

Some papers written by members of the ABLE group are provided through the following
links:

• Software Architecture in General (http://www.cs.cmu.edu/afs/cs/project/able/www
/able/general)

• Formal Aspects of Software Architecture and Architectural Style (http://www.cs.cmu.edu
/afs/cs/project/able/www/able/#formal-section)

• Aesop Software Architecture Design Environments (http://www.cs.cmu.edu/afs/cs
/project/able/www/able/#aesop)

• The Acme Architecture Description and Interchange Language (http://www.cs.cmu.edu
/afs/cs/project/able/www/able/#acme)

• Working Papers (http://www.cs.cmu.edu/afs/cs/project/able/www/able/#working)

• The Armani Software Architecture Design Environment and ADL
(http://www.cs.cmu.edu/afs/cs/project/able/www/able/#armani)

• Pervasive Computing (http://www.cs.cmu.edu/afs/cs/project/able/www/able/#pervasive)

• Others (http://www.cs.cmu.edu/afs/cs/project/able/www/able/#others)

The Defense Advanced Research Projects Agency (DARPA, http://www.darpa.mil/) is the
major sponsor of this project at Carnegie Mellon.

The locus of the software architecture projects at the Software Engineering Institute is the
Product Line Systems Program. The Web site of this program (http://www.sei.cmu.edu
/architecture/sw_architecture.html) nicely articulates what software architecture is all about:

Software architecture forms the backbone for building successful software-
intensive systems. An architecture largely permits or precludes a system’s quality
attributes such as performance or reliability. Architecture represents a capital-
ized investment, an abstract reusable model that can be transferred from one sys-
tem to the next. Architecture represents a common vehicle for communication
among a system’s stakeholders, and is the arena in which conflicting goals and
requirements are mediated. The right architecture is the linchpin for software
project success. The wrong one is a recipe for disaster.

The SEI�s Product Line Systems Program is a leading source of knowledge and expertise in
software architecture. It has contributed courses in a comprehensive curriculum, which can
be used toward certificate programs; offers an extensive range of architecture-related prod-

CMU/SEI-2005-TR-020 69

http://www-2.cs.cmu.edu/afs/cs/project/able/www/able/papers_bib.html#general
http://www-2.cs.cmu.edu/afs/cs/project/able/www/able/papers_bib.html#formal-section
http://www-2.cs.cmu.edu/afs/cs/project/able/www/able/papers_bib.html#aesop
http://www-2.cs.cmu.edu/afs/cs/project/able/www/able/papers_bib.html#acme
http://www-2.cs.cmu.edu/afs/cs/project/able/www/able/papers_bib.html#working
http://www-2.cs.cmu.edu/afs/cs/project/able/www/able/papers_bib.html#armani
http://www-2.cs.cmu.edu/afs/cs/project/able/www/able/papers_bib.html#pervasive
http://www-2.cs.cmu.edu/afs/cs/project/able/www/able/papers_bib.html#others
http://www.darpa.mil/
http://www.cs.cmu.edu/afs/cs/project/able/www/able/general
http://www.cs.cmu.edu/afs/cs/project/able/www/able/general
http://www.cs.cmu.edu/afs/cs/project/able/www/able/#formal-section
http://www.cs.cmu.edu/afs/cs/project/able/www/able/#formal-section
http://www.cs.cmu.edu/afs/cs/project/able/www/able/#aesop
http://www.cs.cmu.edu/afs/cs/project/able/www/able/#aesop
http://www.cs.cmu.edu/afs/cs/project/able/www/able/#acme
http://www.cs.cmu.edu/afs/cs/project/able/www/able/#acme
http://www.cs.cmu.edu/afs/cs/project/able/www/able/#working
http://www.cs.cmu.edu/afs/cs/project/able/www/able/#armani
http://www.cs.cmu.edu/afs/cs/project/able/www/able/#pervasive
http://www.cs.cmu.edu/afs/cs/project/able/www/able/#others
http://www.darpa.mil
http://www.sei.cmu.edu/architecture/sw_architecture.html
http://www.sei.cmu.edu/architecture/sw_architecture.html

ucts and services; and has published a collection of highly acclaimed books on software ar-
chitecture.

Ongoing work concentrates in the following areas: architecture design, architecture documen-
tation, architecture evaluation, architecture life-cycle evaluation, architecture reconstruction,
and reasoning about software quality attributes. The program emphasizes that software archi-
tecture is one of the key reusable assets that form the basis of a software product line and is
codifying best architecture practices in the context of software product line practice, while
helping organizations apply them.

The architecture work is carried out under the auspices of three technical initiatives: Software
Architecture Technology (SAT, http://www.sei.cmu.edu/architecture/sat_init.html), Product
Line Practice (PLP, http://www.sei.cmu.edu/productlines/plp_init.html), and Predictable As-
sembly from Certifiable Components (PACC, http://www.sei.cmu.edu/pacc/pacc_init.html).

An example of frontier work on software architecture can be found in a project funded by the
SEI IR&D program titled �Architecture-Based Self-Adapting Systems,� described earlier in
this document. It has been funded for continuation beyond a feasibility study stage this year.
It is an excellent example of the collaboration of the SEI with faculty and students in SCS.
The investigators are Rick Kazman and David Garlan, assisted by Hong Yan (ISRI PhD stu-
dent) and Bradley Schmerl (ISRI system scientist).

The goal of the research is to automatically determine the run-time architecture of a system
without reverse engineering and to use this to create a reflection model that allows a system
to reason about its own behavior and adapt to a changing environment and needs.

At this stage the work is beyond extending a prototype system built by Yan to extract run-
time information from a system previously developed by Kazman. It is expected that gov-
ernment agencies working with the researchers will have their system analyzed. Publications,
internal to SEI and external are forthcoming.

8.2.1.3 Architecture work in other universities

At the University of California at Irvine, Professor Nikil Dutt�s group is doing research
that lies at the intersection of compilers, architectures, and computer-aided design, with a
specific focus on the exploration, evaluation, and design of domain-specific embedded sys-
tems. This group has developed a novel architectural description language that facilitates
rapid exploration of programmable embedded systems, as well as automatic generation of
software toolkits supporting embedded systems development (including optimizing compilers
and simulators). See http://www.ics.uci.edu/%7Edutt/.

At the University of Southern California, Professor Barry Boehm and his group are pursu-
ing research that focuses on value-based software engineering, including a method for inte-
grating a software system�s process models, product models, property models, and success
models called model-based (system) architecting and software engineering (MBASE).

70 CMU/SEI-2005-TR-020

http://www.sei.cmu.edu/architecture/sat_init.html
http://www.sei.cmu.edu/architecture/sat_init.html
http://www.sei.cmu.edu/productlines/plp_init.html
http://www.sei.cmu.edu/productlines/plp_init.html
http://www.sei.cmu.edu/pacc/pacc_init.html
http://www.sei.cmu.edu/pacc/pacc_init.html
http://www.ics.uci.edu/%7Edutt/
http://www.sei.cmu.edu/architecture/sat_init.html

Boehm�s contributions to the field include the constructive cost model (COCOMO), the spi-
ral model of the software process, the Theory W (win-win) approach to software management
and requirements determination, the foundations for the areas of software risk management
and software quality factor analysis, and two advanced software engineering environments:
the TRW Software Productivity System and the Quantum Leap Environment. See
http://sunset.usc.edu/people/barry.html.

At the University of Texas at Austin, Dewayne Perry and his group are pursuing research
on software engineering and architecture with goals of establishing principles about, and im-
proving practices for, building and evolving large-scale software and process systems. In his
theoretical work, Perry looks for fundamental mechanisms, such as the role of feedback and
control in evolution processes and the role of architecture in system evolution. In his empiri-
cal work, he primarily uses the results to prune his theoretical work, but also creates empiri-
cal methods when needed to support that work. An effect of his many interactions with de-
velopments is the transfer of practical insights about their products and processes. See
http://www.ece.utexas.edu/faculty/directory/details.php?id=77.

At Imperial College in London, under Jeff Magee in the Department of Computing, work in
software architecture deals with architectural description languages, dynamic architectures,
and self-organizing architectures. The Distributed Software Engineering section conducts
research on the software development process and software support environments, particu-
larly for real-time, embedded, parallel and distributed systems. See
http://www.doc.ic.ac.uk/~jnm/.

At the University of Washington, David Notkin�s educational and research interests are in
software engineering, with a particular focus in software evolution�understanding why
software is so hard and expensive to change, and in turn reducing those difficulties and costs.
See http://www.cs.washington.edu/homes/notkin/.

At the University of St. Andrews at Edinburgh, a strong group of researchers is conducting
work on software architecture at the frontiers of the field. Their Web site at http://www.dcs.st-
and.ac.uk/research/architecture/ contains a very descriptive, graphic way of defining software
architecture:

Software architecture is concerned with how to design software components and
make them work together. For example, the mechanisms by which enterprises
implement their IT strategy by gluing together software components are attract-
ing the attention of system modelers, tool makers and computational joiners
(who do the gluing). New methods such as open distributed object systems, proc-
ess modeling and novel network architectures are being used heavily in industry
to address these problems.

As the use of a computer system grows it gathers information and accretes users
who have an expectation of the manner in which the system may be used. Thus
information flows not only between computers but also between computers and

CMU/SEI-2005-TR-020 71

http://sunset.usc.edu/people/barry.html
http://www.ece.utexas.edu/faculty/directory/details.php?id=77
http://www.doc.ic.ac.uk/%7Ejnm/
http://www.cs.washington.edu/homes/notkin/
http://www.dcs.st-and.ac.uk/research/architecture/
http://www.dcs.st-and.ac.uk/research/architecture/

humans, and humans and humans. To change such a system requires that consid-
eration of the impact of the changes on the users be understood as well as the
technological mechanisms for evolution.

8.2.2 Aspect-Oriented Programming (AOP) and Aspect-
Oriented Software Development (AOSD)

Aspect-oriented programming (AOP) attempts to provide a clean separation of concerns,
enabling programmers to reason about and evolve programs more effectively. Many language
constructs have been proposed to enable better separation of concerns, and a number seem to
be promising ways to improve the way software development is done. However, a number of
open problems remain, including understanding the formal foundations of aspects, supporting
aspect encapsulation, understanding automated and human reasoning about aspect-oriented
programs, and studying the practical consequences of the technology.

An excellent articulation of aspect-oriented programming is found on the Web site of the
Software Engineering Research Group at the University of British Columbia
(http://www.cs.ubc.ca/labs/spl/):

A key goal of software design is the separation or modularization of concerns.
Many concerns—including error-checking strategies, design patterns, synchroni-
zation policies, resource sharing, distribution and performance optimization—
crosscut the program structure. When standard procedural or object-oriented
programming (OOP) languages are used, it is hard to separate crosscutting con-
cerns. Aspect-oriented programming (AOP) has been developed to support
modularization of these concerns. AOP languages provide mechanisms that
crosscut program structure in well-defined ways. These mechanisms make it pos-
sible to cleanly capture the structure of crosscutting concerns, making both the
code and the design easier to understand and develop.

Aspect-oriented software development (AOSD) is a promising emerging technology. AOSD
addresses problems experienced with object-oriented development, but has much greater ap-
plicability across software development in general. This is not a mature technology but its
large-scale adoption by IBM promises to greatly accelerate its maturation. This is not the first
time that AOSD has been scouted by the SEI. A series of white papers by the Product Line
Systems Program under Linda Northrop, which had the objective to do technology scouting
relevant to software product lines, last year included one white paper on this subject. An ex-
cerpt from that paper was included in the SEI report Results of SEI Independent Research and
Development Projects and Report on Emerging Technologies and Technology Trends
(CMU/SEI-2004-TR-018), which was co-authored by this writer. The report is available at
http://www.sei.cmu.edu/publications/documents/04.reports/04tr018.html.

72 CMU/SEI-2005-TR-020

http://www.cs.ubc.ca/labs/spl/):
http://www.sei.cmu.edu/publications/documents/04.reports/04tr018.html

The following are excerpts from the original white paper:

The commitment of industry including HP, IBM, and BEA may well hasten the
maturation of AOSD. Their use of the technology will more quickly uncover the
gaps of knowledge that only appear when solving industrial-strength problems.
The focus on e-commerce and Web servers will also hasten the discovery of rele-
vant design patterns.

Because of the strong connections between aspect-oriented software development
with software architecture and software product lines, the SEI has been carefully
monitoring developments in this field as it has evolved over the past few years.
The Product Lines System Program is already involved with the AOSD commu-
nity. It needs to elicit their support to make needed software tools a reality. Fur-
ther investigation of the connections between AOSD and software architecture
and software product lines is required.

8.2.2.1 Modular aspect-oriented programming

At Carnegie Mellon, work on aspect-oriented programming by Jonathan Aldrich is incorpo-
rated in a project designated modular aspect-oriented programming whose goal is to move
aspect-oriented programming toward the mainstream of both language design and engineer-
ing practice. The work focuses on a number of research questions: how to formally model
aspect-oriented programming constructs; how to design a module system; how to design new
language features; what are the practical benefits and drawbacks of proposed aspect-oriented
language features; how to compare different language designs when applied to similar prob-
lems; and how to effectively analyze aspect-oriented programs.

So far, a formal model of aspect-oriented programming named TinyAspect has been built and
used to study open modules, a new module system that preserves the extensibility of aspects
along with a strong encapsulation property, and can be used to benefit the reasoning benefits
of aspect-oriented programming tools.

The work above is on a research stage, but a number of publications by Aldrich and cowork-
ers are in print or have been submitted for publication:

• Jonathan Aldrich. Open Modules: Modular Reasoning about Advice. Submitted for pub-
lication. An earlier version appeared in Foundations of Aspect Languages, March 2004.
The full proofs for the theorems in the paper are published as Carnegie Mellon Technical
Report CMU-ISRI-04-141, December 2004 (which supersedes an earlier technical report,
CMU-ISRI-04-108).

• Jonathan Aldrich. �Open Modules: Reconciling Extensibility and Information Hiding.�
Proceedings of the AOSD 2004 Workshop on Software Engineering Properties of Lan-
guages for Aspect Technologies, March 2004. Available at http://www.cs.cmu.edu
/~aldrich/papers/splat04.pdf. A file describing the raw, detailed results of our micro-

CMU/SEI-2005-TR-020 73

http://www-2.cs.cmu.edu/%7Ealdrich/papers/open-modules.pdf
http://www-2.cs.cmu.edu/%7Ealdrich/papers/foal04.pdf
http://www-2.cs.cmu.edu/%7Ealdrich/papers/CMU-ISRI-04-141.pdf
http://www-2.cs.cmu.edu/%7Ealdrich/papers/CMU-ISRI-04-141.pdf
http://www-2.cs.cmu.edu/%7Ealdrich/papers/CMU-ISRI-04-108.pdf
http://www-2.cs.cmu.edu/%7Ealdrich/papers/splat04.pdf
http://www.cs.cmu.edu

experiment with the SpaceWar program is available at http://www.cs.cmu.edu/~aldrich
/aosd/spacewar-study-details.txt.

• Neel Krishnaswami and Jonathan Aldrich. Statically-Scoped Exceptions: A Typed Fo-
undation for Aspect-Oriented Error Handling. Available at
http://www.cs.cmu.edu/~aldrich
/papers/static-exceptions.pdf. This article has been submitted for publication.

Prominent people in this field, in addition to those at Carnegie Mellon, include Adrian Colyer
at IBM; faculty and students at the University British Columbia; and a group of faculty and
students at Northeastern University in the Demeter project (http://www.ccs.neu.edu
/research/demeter/).

Adrian Colyer is an IBM Senior Technical Staff Member and the leader of the AspectJ and
AspectJ Development Tools Projects on Eclipse.org. He divides his time between working on
AO technologies, and helping groups throughout IBM to adopt and apply them. AspectJ is a
seamless aspect-oriented extension to the Java programming language. It is Java platform
compatible and easy to learn and use. See http://eclipse.org/aspectj/.

At Northeastern University, the Center for Software Science, led by professors Karl Lie-
berherr and David Lorenz, are conducting research whose objective is to create software that
is easy to maintain and evolve using adaptive programming and aspect-oriented program-
ming. See http://www.ccs.neu.edu/research/demeter/index.html.

At the University of British Columbia, a strong group of researchers led by professors
Gregor Kiczales, Gail Murphy, and Kris De Volder in the Software Practices Laboratory are
advancing the state of the art in aspect-oriented programming. Their work has been cited
above.

Another project mentioned previously is the Rapide project at Stanford University
(http://pavg.stanford.ed /rapide/u).

The Rapide Language effort focuses on developing a new technology for building large-
scale, distributed multi-language systems. This technology is based upon a new generation of
computer languages, called Executable Architecture Definition Languages (EADLs), and an
innovative toolset supporting the use of EADLs in evolutionary development and rigorous
analysis of large-scale systems. Rapide is designed to support component-based development
of large, multi-language systems by utilizing architecture definitions as the development
framework. This effort is led by David C. Luckham (http://pavg.stanford.edu/people/dcl/).

8.2.3 Autonomic Application Software
Autonomic computing aims to reduce the complexity of managing software systems. To be
autonomic, a system must configure and reconfigure itself, continually optimize itself, re-
cover from malfunction, or protect itself, while keeping its complexity hidden from the user.

74 CMU/SEI-2005-TR-020

http://www-2.cs.cmu.edu/%7Ealdrich/aosd/spacewar-study-details.txt
http://www-2.cs.cmu.edu/%7Ealdrich/papers/static-exceptions.pdf
http://www-2.cs.cmu.edu/%7Ealdrich/papers/static-exceptions.pdf
http://www.ccs.neu.edu/research/demeter/
http://eclipse.org/aspectj/
http://www.ccs.neu.edu/research/demeter/index.html
http://pavg.stanford.edu/rapide/
http://pavg.stanford.edu/rapide/
http://pavg.stanford.edu/people/dcl/
http://www.cs.cmu.edu/~aldrich
http://www.cs.cmu.edu/~aldrich
http://www.ccs.neu.edu/research/demeter
http://www.ccs.neu.edu/research/demeter
http://pavg.stanford.ed/rapide/u
http://pavg.stanford.edu/people/dcl

Understanding software engineering issues is critical for the proliferation of autonomic appli-
cations.

This field has attracted a number of researchers in the international software community. A
workshop in this topical area took place as part of the 27th International Conference on Soft-
ware Engineering (ICSE, http://www.cs.wustl.edu/icse05/Home/index.shtml). The topical
area was titled DEAS 2005: Design and Evolution of Autonomic Application Software
(http://www.deas2005.cs. vic.cau). The organizers, including two members of Carnegie Mel-
lon (one from SCS and the other from the SEI) were David Garlan, SCS; Marin Litoiu, IBM
Canada; Hausi A. Muller, University of Victoria, Canada; John Mylopoulos, University of
Toronto, Canada; Dennis B. Smith, SEI; and Kenny Wong, University of Alberta, Canada.

The goal of this workshop was to bring together researchers and practitioners who investigate
concepts, methods, techniques, and tools to design and evolve autonomic software. While
there are several workshops that deal with autonomic computing systems, there are few
workshops that focus on software engineering issues�that is, how do we design, build, and
evolve such software systems so that they can meet given, and evolving, requirements for
particular classes of users and/or applications. Most existing systems cannot be redesigned
and redeveloped from scratch to incorporate autonomic capabilities. Rather, self-management
capabilities have to be added gradually and incrementally, one aspect at a time. With the pro-
liferation of autonomic applications, users will impose ever-greater demands with respect to
functional and non-functional requirements for autonomicity.

Topics of interest in this area include, but are not limited to, architectural styles, attribute-
based architectural styles, and architecture patterns for autonomic elements and systems, de-
signing high-variability software, designing self-managed systems, evolving autonomic soft-
ware, injecting autonomicity into legacy systems, integration mechanisms, methods for
evaluating complex tradeoffs, adoption of autonomic systems, or assessing the user experi-
ence in self-managed systems.

8.2.4 Verification of Autonomous Systems
This portion of this report is based on an extensive interview with Ed Clarke in the Carnegie
Mellon University Department of Computer Science and a follow-up analysis by the writer of
the report. When appropriate, pieces of the report are extracted from the Web sites of Clarke
and members of his team.

Clarke and his team are working toward developing tools and techniques to support formal
verification of autonomous systems. This work is highly synergistic with, and has an influ-
ence on, related work at the SEI. The overall project is conducted under the umbrella of
�automatic verification of computer hardware and software.�

CMU/SEI-2005-TR-020 75

http://www.deas2005.cs.uvic.ca/
http://www.cs.wustl.edu/icse05/Home/index.shtml
http://www.deas2005.cs.vic.cau

8.2.4.1 Automatic verification of computer hardware and software

The rationale for this work is the recognition that logical errors in sequential circuit designs
and communication protocols constitute important problems for system designers. They can
delay considerably the deployment of new products to the market or cause the failure of some
critical device that is already in use. The research group under Clarke has developed a verifi-
cation method called temporal logic model checking for this class of systems. In this ap-
proach, specifications are expressed in a propositional temporal logic, while circuits and pro-
tocols are modeled as state-transition systems. An efficient search procedure is used to
determine automatically if a specification is satisfied by some transition system. The tech-
nique has been used to find subtle errors in a number of cases.

The size of the state-transition systems that can be verified by model checking techniques has
recently increased dramatically. By representing transition relations implicitly using binary
decision diagrams (BDDs), cases have been checked that would have required 1020 states
with the original algorithm. Various refinements of the BDD-based techniques have pushed
the state count up to 10100. By combining model checking with various abstraction tech-
niques, it is possible to handle even larger systems. For example, the technique has been used
to verify the cache coherence protocol in the IEEE Futurebus+ standard. Several errors were
found that had been previously undetected.

For additional information see the Carnegie Mellon niversity Model Checking home pageU
(http://www.cs.cmu.edu/%7Emodelcheck/).

The overall project led by Clarke is a collaborative effort between SCS and the Automated
Software Engineering Group at NASA Ames Research Center. See Automated Software En-
gineering Group (http://ase.arc.nasa.gov/).

At NASA Ames, the goal of �robust software engineering� is to increase by orders of magni-
tude both the quality and the productivity of software engineering. The cross-cutting research
done by the Robust Software Engineering group of Code TI (http://ic.arc.nasa.gov/) at NASA
Ames (http://www.arc.nasa.gov) draws upon several disciplines, including: artificial intelli-
gence�particularly automated reasoning and knowledge representation; formal methods;
programming language theory; mathematical logic; and advanced compiler methods. The
focus is on strategic research�that is, research that is directed to the 5�15-year time horizon,
aiming to make large impacts rather than incremental advances. The research is done in the
context of pacing NASA applications, as a means of both providing feedback to the group
and as a means for the group to make contributions to NASA�s goals as progress is made. The
group currently has space-related projects in space science code generation, and in software
verification for deep-space missions. For civilian aviation, the group is engaged in research
on next-generation auto-coding technology and high-assurance software design. They are
also developing innovative educational technology, and have some sample lessons for stu-
dents and teachers based on work done so far.

76 CMU/SEI-2005-TR-020

http://www.cs.cmu.edu/%7Emodelcheck/
http://ase.arc.nasa.gov/
http://ase.arc.nasa.gov/
http://ic.arc.nasa.gov/
http://www.arc.nasa.gov/
http://www.arc.nasa.gov/
http://www.cs.cmu.edu/%7Emodelcheck
http://ase.arc.nasa.gov
http://ic.arc.nasa.gov
http://www.arc.nasa.gov

This work is advancing the state of the art and although it is moving at a rapid pace, it has not
reached yet a state of practice. The technology will reach a state of maturity several years
before it becomes ready for transition.

(At the time of this writing, the writer of this report is still looking at people in other institu-
tions doing related work.)

It is worth mentioning that the work of Clarke was the source of a fruitful collaboration be-
tween SCS and SEI: the IR&D project titled �Verification of Evolving Software via Compo-
nent Substitutability Analysis,� which is described earlier in this report.

8.2.5 Proof-Carrying Code
This work is led by Peter Lee in SCS. Proof-carrying code (PCC) is a technique by which a
code consumer (e.g., a host) can verify that code provided by an untrusted code producer ad-
heres to a predefined set of safety rules. These rules, also referred to as the safety policy, are
chosen by the code consumer in such a way that they are sufficient guarantees for safe behav-
ior of programs. There are many potential applications of PCC. For example, for mobile code
the code consumer would be an Internet host (e.g., a Web browser) and the code producer a
server that sends applets. In operating systems, one can have the kernel act as the host, with
untrusted applications acting as code producers that download and execute code in the ker-
nel�s address space.

The key idea behind proof-carrying code is that the code producer is required to create a for-
mal safety proof that attests to the fact that the code respects the defined safety policy. Then,
the code consumer is able to use a simple and fast proof validator to check, with certainty that
the proof is valid and hence the foreign code is safe to execute. See http://www-
2.cs.cmu.edu/~petel/papers/pcc/pcc.html.

This work, which is considered frontier research, has recently attracted the attention of the
SEI, and led to collaboration between Kurt Wallnau from the SEI and Peter Lee. The collabo-
ration was funded in the IR&D project titled �Proof-Carrying Code,� described earlier in this
report.

8.2.6 The ConCert Project

8.2.6.1 Certified Code for Grid Computing

The ConCert Project, also led by Peter Lee, investigates the theoretical and engineering basis
for the trustless dissemination of software in an untrusted environment. To make this possible
the project investigates machine-checkable certificates of compliance with security, integrity,
and privacy requirements. Such checkable certificates allow participants to verify the intrin-
sic properties of disseminated software, rather than extrinsic properties such as the software�s
point of origin.

CMU/SEI-2005-TR-020 77

http://www-2.cs.cmu.edu/%7Epetel/papers/pcc/pcc.html
http://www-2.cs.cmu.edu/%7Epetel/papers/pcc/pcc.html

To obtain checkable certificates the project develops certifying compilers that equip their ob-
ject code with formal representations of proofs of properties of the code. Specifically, the
project investigates the use of proof-carrying code, typed intermediate languages, and typed
assembly languages for this purpose. In each case certificate verification is reduced to type-
checking in a suitable type system.

To demonstrate the utility of trustless software dissemination, the project develops an infra-
structure for building applications that exploit the computational resources of a network of
computers. The infrastructure consists of a �steward� running on host computers that accepts
and verifies certified binaries before installing and executing them, and certifying compilers
that generate certified binaries for distribution on the network. See http://www-2.cs.cmu.edu
/afs/cs.cmu.edu/project/concert/www/.

8.2.7 The Fox Project
This project, whose principal investigators are professors Robert Harper, Peter Lee, and
Frank Pfenning of SCS, is also deemed to be at the frontier of advanced research and prom-
ises to have an impact in software development technology. It is funded by DARPA.
The objective of the Fox Project is the development of language support for building safe,
highly composable, and reliable systems. It seeks to accomplish this by exploiting and ad-
vancing the state of the art in programming language technology, including fundamental de-
sign principles, compiler technologies, and the mathematical underpinning of programming
languages and logics. Results are demonstrated through language implementations and appli-
cations in systems software, such as embedded systems or active networks, emphasizing
those that must simultaneously be highly customizable, safe, and efficient.

The current emphasis is on applications for program composition in embedded systems. See
http://www-2.cs.cmu.edu/~fox/.

8.2.8 Building Certifiably Dependable Software Systems
Under the Current Projects System of the National Academies, a study project that merits
close follow-up by the SEI for its relevance and future impact is titled �Sufficient Evidence?
Building Certifiably Dependable Software Systems.� Peter Lee is a member of the committee
conducting this study.

This project will convene a mixed group of experts to assess current practices for developing
and evaluating mission-critical software, with an emphasis on dependability objectives. The
committee will address system certification, examining a few different application domains
(e.g., medical devices and aviation systems) and their approaches to software evaluation and
assurance. This should provide some understanding of the common ground and disparities
that exist. The discussion will engage members of the fundamental research community, who
have been scarce in this arena. It will consider approaches to systematically assessing sys-
tems� user interfaces. It will examine potential benefits and costs of improvements in evalua-

78 CMU/SEI-2005-TR-020

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/concert/www/
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/concert/www/
http://www-2.cs.cmu.edu/%7Efox/

tion of dependability as performance dimensions. It will evaluate the extent to which current
tools and techniques aid in ensuring and evaluating dependability in software and investigate
technology that might support changes in the development and certification process. It will
also use the information amassed to develop a research agenda for dependable software sys-
tem development and certification, factoring in earlier high-confidence software and systems
research planning. It will also investigate ideas for improving the certification processes for
dependability-critical software systems.

The work of the committee is being conducted in two phases. Phase I consisted of a work-
shop and summary report, completed early in 2004. Phase II follows on from the framing
provided by Phase I and should result in a final report to be issued at the end of the project.

This project is funded by the National Science Foundation. See
http://www4.nas.edu/webcr.nsf/5c50571a75df494485256a95007a091e/a4362b7f9a6cc0c685
256da4004cc0f4?OpenDocument&Highlight=0,dependable.

8.3 Technology Scouting in Systems and Software
Engineering

8.3.1 Introduction
In this section of the report, we look at researchers and institutions that publish in journals
related to systems and software engineering. It is well known that the two areas, systems en-
gineering and software engineering, are interrelated and sponsors of the SEI are increasingly
interested in aspects of software engineering and technology that should be more interlinked
with systems (as broadly defined by the Department of Defense).

Members of the SEI over the years have reported with some pride the high ranking of the
institute in the field of systems and software engineering. Other institutions highly ranked
also tend to publicize their high rankings. The SEI consistently ranks as number one. It is in-
teresting and prudent to analyze the value of this ranking, which comes from a publication
titled An Assessment of Systems and Software Engineering Scholars and Institutions by
Robert L. Glass and T.Y. Chen. (Glass and Chen, 2005). This publication purports to name
the top scholars and institutions in the field of systems and software engineering. It presents
the findings of a five-year study of the top scholars and institutions in the systems and soft-
ware engineering field, as measured by the quantity of papers published in the journals of the
field. The top scholar is Khaled El Emam of the Canadian National Research Council, and
the top institution is Carnegie Mellon University and its Software Engineering Institute. The
publication is part of an ongoing study, conducted annually, that identifies the top 15 scholars
and institutions in the most recent five-year period. It attempts to answer the following ques-
tions: Who are the most published scholars in the field of systems and software engineering
(SSE)? And which are the most published institutions? As stated in the publication:

CMU/SEI-2005-TR-020 79

http://www4.nas.edu/webcr.nsf/5c50571a75df494485256a95007a091e/a4362b7f9a6cc0c685256da4004cc0f4?OpenDocument&Highlight=0,dependable
http://www4.nas.edu/webcr.nsf/5c50571a75df494485256a95007a091e/a4362b7f9a6cc0c685256da4004cc0f4?OpenDocument&Highlight=0,dependable

The paper is the 11th in an annual series whose goal is to answer those ques-
tions. The first such paper was (Glass, 1994); subsequently such studies have
been published each year, in a fall issue of the Journal of Systems and Software
(when the journal was published 12 times per year, the study findings were pub-
lished in the October issue; now that it is published 15 times per year, they are
published in the 12th or 13th issue). This is the seventh year in which the study
has included five years worth of data (in the previous years, 1–4 years were cov-
ered). In future years, the study will continue to cover the most recent five year
period.

The publication also states: �This paper reports on the top scholars and institutions for the
five-year period 1999�2003. The methodology of the study and its limitations are discussed
in the article, which further adds: �It is important to note two things at the outset, however:
(1) The study findings are based on frequency of publication in the leading journals in the
SSE field. (2) The study focuses on the field of SSE, and not, for example, on computer sci-
ence or information systems.�

With these caveats and limitations the findings are of value to those of us who have been fol-
lowing the field of software engineering for some time and who also pay attention to the field
of systems engineering, particularly because of the importance of the interrelations between
systems engineering and software engineering. It is also interesting to note that a number of
the top scholars and institutions highly ranked would not be on the radar screen of those of us
who periodically scout the field of software engineering.

In this report we look at the leading scholars and institutions that are highly ranked in Glass
and Chen�s study. We look at the list of the names and provide the available links to Web sites
of authors and/or institutions. In some cases, we give the personal Web page of the researcher
and also of his/her department or school. In other cases, we provide access to biographies.
After quoting the conclusions drawn by Glass and Chen in their own study, we draw our own
conclusions.

8.3.1.1 Top scholars in the field of systems and software engineering

Khaled El Emam, Canadian National Research Council. He is also associated with the Cut-
ter Consortium, which has been for some time a proponent of Agile Software Development
(see Agile Software Development & Project Management Practice, http://www.cutter.com
/project/practice.html). El Emam�s stated interests are software quality and software meas-
urement. (Agile software development is described in more detail later in this report.)

Barbara Kitchenham, Computer Science, Keele University, UK (http://www.cs.keele.ac.uk
/main.php?page=home&menu=home&content=home). Kitchenham is a well-known re-
searcher whose interests are in software metrics, project management, quality management,
technology evaluation, and evidence-based software engineering.

80 CMU/SEI-2005-TR-020

http://www.cutter.com/project/practice.html
http://www.cs.keele.ac.uk/main.php?page=home&menu=home&content=home
http://www.cs.keele.ac.uk/main.php?page=home&menu=home&content=home
http://www.cutter.com

Hyoung-Joo Kim, Seoul National University, Korea (http://web.cse.snu.ac.kr/english
/index.asp and http://oopsla.snu.ac.kr/). Kim is a well-known researcher whose interests are
in XML, semantic web, and object-oriented systems.

Robert L. Glass, Computing Trends (http://www.developerdotstar.com/mag
/bios/robert_glass.html). Glass is an old timer in the field of software engineering. He is the
author of the magazine developer.* (The Independent Magazine for Software Development
Professionals). He is an author and consultant on software quality issues who has written
more than 20 books on the topic. He owns his own company, Computing Trends, and writes
columns on Software Engineering for ACM Communications Magazine and IEEE Software.
He is a co-author of the main reference of this section. His areas of expertise are software
problems and solutions, software practice, software as a discipline, and project failure.

Lionel C. Briand, Department of Systems and Computer Engineering, Carleton University,
Canada (http://www.sce.carleton.ca/faculty/briand/index.html and http://www.carleton.ca/).
Briand�s interests are in software testing, empirical software engineering, and object-oriented
analysis and design.

Brian Henderson-Sellers, Faculty of Information Technology, University of Technology,
Sydney, Australia (http://www.uts.edu.au/). Henderson-Sellers� interests are in object-oriented
methodologies, metamodeling, and modeling languages.

Richard Lai, Department of Computer Science & Computer Engineering, La Trobe Univer-
sity, Melbourne, Australia (http://www.latrobe.edu.au/cs/). Lai�s interests are in Web services,
communication protocol engineering, component based software engineering, software met-
rics, and testing.

Kassem Saleh, American University, Sharjah, United Arab Emirates (http://www.lyee-
project.soft.iwate-pu.ac.jp/en/unit/uae/Kassem_CV-AUS-oct-2002.pdf). Saleh�s interests are
in distributed systems and software mobility.

Mary Jean Harrold, College of Computing, Georgia Institute of Technology
(http://www.cc.gatech.edu/~harrold/). Harrold�s interests are in scalable program analysis-
based software engineering, regression testing, analysis and testing of object-oriented soft-
ware, software visualization, and remote monitoring of deployed software.

Claes Wohlin, Software Engineering Research Lab. Blekinge Institute of Technology, Swe-
den (http://www.ipd.bth.se/cwo/Claes.html and http://www.bth.se/tek/serl/). Wohlin is inter-
ested in empirical methods, software metrics, software quality, and systematic improvement.

Myoung Ho Kim, Korea Advanced Institute of Science and Technology, Korea
(http://www.kaist.edu/). Kim�s interests are database systems and distributed information
processing.

T.Y. Chen, Faculty of Information and Communication Technologies, Swinburne University
of Technology, Australia (http://www.ict.swin.edu.au/, http://www.it.swin.edu.au/staff/tchen,

CMU/SEI-2005-TR-020 81

http://web.cse.snu.ac.kr/english/index.asp
http://web.cse.snu.ac.kr/english/index.asp
http://oopsla.snu.ac.kr/
http://www.developerdotstar.com/mag/bios/robert_glass.html
http://www.developerdotstar.com/mag/bios/robert_glass.html
http://www.sce.carleton.ca/faculty/briand/index.html
http://www.carleton.ca/
http://www.uts.edu.au/
http://www.latrobe.edu.au/cs/
http://www.lyee-project.soft.iwate-pu.ac.jp/en/unit/uae/Kassem_CV-AUS-oct-2002.pdf
http://www.lyee-project.soft.iwate-pu.ac.jp/en/unit/uae/Kassem_CV-AUS-oct-2002.pdf
http://www.cc.gatech.edu/%7Eharrold/
http://www.ipd.bth.se/cwo/Claes.html
http://www.bth.se/tek/serl/
http://www.kaist.edu/
http://www.ict.swin.edu.au/
http://www.it.swin.edu.au/staff/tchen
http://web.cse.snu.ac.kr/english/index.aspandoopsla.snu.ac.kr
http://www.sce.carleton.ca/faculty/briand/index.htmlandwww.carleton.ca
http://www.uts.edu.au
http://www.latrobe.edu.au/cs
http://www.cc.gatech.edu/~harrold
http://www.ipd.bth.se/cwo/Claes.htmlandwww.bth.se/tek/serl
http://www.kaist.edu

and http://www.ict.swin.edu.au/. Chen is interested in software testing, software quality, and
software maintenance.

Xudong He, School of Computer Science, Florida International University
(http://www.cs.fiu.edu/faculty/hex/ and http://www.cs.fiu.edu/home.php). He�s interests are
formal methods, software architecture, and software testing.

Per Runeson, Software Engineering Research Group, Lund University, Sweden
(http://serg.telecom.lth.se/). Runeson is interested in empirical software engineering, verifica-
tion and validation, and software quality management.

James A. Whittaker, Center for Software Engineering Research, Florida Institute of Tech-
nology (http://www.cs.fit.edu/wds/faculty/whittaker/whittaker.html). Whittaker is interested
in computer security, penetration testing, software testing, and software engineering.

Hai Zhuge, Chinese Academy of Sciences (http://www.ict.ac.cn/en/3-33.htm and
http://grid.hust.edu.cn/gcc2004/chair_comm.htm). Zhuge is interested in Internet-based soft-
ware engineering, software process model, knowledge-based software engineering, and team
software development.

8.3.1.2 Journals included in the survey

The journals included in the survey are:

• Information and Software Technology (IST), Elsevier Science
• Journal of Systems and Software (JSS), Elsevier Science
• Software Practice and Experience (SPE), John Wiley & Sons, UK
• Software (SW), IEEE
• Transactions on Software Engineering and Methodologies (TOSEM), ACM
• Transactions on Software Engineering (TSE), IEEE

8.3.1.3 Leading institutions

The leading 15 institutions in the field, and the journals where their researchers publish, are
shown in the following table.

Rank Institution Journals
1 Carnegie Mellon/SEI All
2 Korea Advanced Institute of Science and Technology All but TOSEM, TSE, SW
3 National Chiao Tung University All but TOSEM, SW
4 Fraunhofer IESE All but TOSEM
5 Bell Labs/Lucent All
6 Seoul National University, Korea All but TOSEM, SW
7 City University, Hong Kong All but TOSEM
8 Iowa State University All but TOSEM, SW
9 Microsoft All but TOSEM, SW

82 CMU/SEI-2005-TR-020

http://www.ict.swin.edu.au/
http://www.cs.fiu.edu/faculty/hex/
http://www.cs.fiu.edu/home.php
http://serg.telecom.lth.se/
http://www.cs.fit.edu/wds/faculty/whittaker/whittaker.html
http://www.ict.ac.cn/en/3-33.htm
http://grid.hust.edu.cn/gcc2004/chair_comm.htm
http://www.cs.fiu.edu/faculty/hex/andwww.cs.fiu.edu/home.php
http://serg.telecom.lth.se
http://www.cs.fit.edu/wds/faculty/whittaker/whittaker.html
http://www.cs.fit.edu/wds/faculty/whittaker/whittaker.html
http://www.cs.fit.edu/wds/faculty/whittaker/whittaker.html
http://www.ict.ac.cn/en/3-33.htmandgrid.hust.edu.cn/gcc2004/chair_comm.htm

10 National University of Singapore All but TOSEM, SW
11 Georgia Institute of Technology All but SW
12 Lund University, Sweden All but TOSEM
13 National Cheng Kung University All but TOSEM, SPE, SW
14 Osaka University All but SW
15 Aristotle University of Thessaloniki, Greece All but TOSEM, SW

This table is reproduced from the main reference in this report, but without institutional
scores.

Links for the 15 institutions are given below.

• Carnegie Mellon/SEI: http://www.cmu.edu/ and http://www.sei.cmu.edu/

• Korea Advanced Institute of Science and Technology: http://www.kaist.edu/

• National Chiao Tung University: http://www.nctu.edu.tw/english/

• Fraunhofer IESE: http://www.iese.fhg.de/

• Bell Labs/Lucent: http://www.lucent.com/

• Seoul National University, Korea: http://www.snu.ac.kr/engsnu/

• City University, Hong Kong: http://www.cityu.edu.hk/

• Iowa State University: http://www.iastate.edu/

• Microsoft: http://www.microsoft.com/

• National University of Singapore: http://www.nus.edu.sg/

• Georgia Institute of Technology: http://www.gatech.edu/

• Lund University, Sweden: http://www.lu.se/o.o.i.s/450

• National Cheng Kung University: http://www.ncku.edu.tw/english/

• Osaka University: http://www.osaka-u.ac.jp/eng/

• Aristotle University of Thessaloniki, Greece: http://www.auth.gr/index.en.php3

As pointed out in the cited reference, the study is specific to the field of systems and software
engineering. For an analysis of the characteristics of research in this field, see Glass et al.,
(2002). There are similar studies for the related fields of computer science (CS) and informa-
tion systems (IS). Similar analyses of the research in these fields may be found in Ramesh et
al. (2004) for CS and Vessey et al. (2002) for IS. For comparisons of the different studies and
results see again the main reference of this report. This reference describes the study method-
ology, journals, counting schemes, and limitations of these types of studies.

CMU/SEI-2005-TR-020 83

http://www.cmu.edu/
http://www.sei.cmu.edu/
http://www.kaist.edu/
http://www.nctu.edu.tw/english/
http://www.iese.fhg.de/
http://www.lucent.com/
http://www.snu.ac.kr/engsnu/
http://www.cityu.edu.hk/
http://www.iastate.edu/
http://www.microsoft.com/
http://www.nus.edu.sg/
http://www.gatech.edu/
http://www.lu.se/o.o.i.s/450
http://www.ncku.edu.tw/english/
http://www.osaka-u.ac.jp/eng/
http://www.auth.gr/index.en.php3

8.3.1.4 Conclusions from the study of Glass and Chen

The study is one in an ongoing series whose goal is to identify the top scholars and institu-
tions in the field of SSE. Similar studies in related fields (CS and IS) convince us that such a
study is meaningful and worthwhile. By now, at the end of 11 years of conducting the study,
we believe we can identify with some confidence those top scholars and institutions:

Top Scholars:

1. Khaled El Emam of the Canadian National Research Council

2. Barbara Kitchenham of Keele University

3. Hyoung-Joo Kim of Seoul National University, Korea

4. Robert L. Glass, Computing Trends

5. Lionel Briand of Carleton University, Canada

Top Institutions:

1. Carnegie Mellon University and the Software Engineering Institute

2. Korea Advanced Institute of Science and Technology

3. National Chiao-Tung University of Taiwan

4. Fraunhofer Institute for Experimental Software Engineering

5. Bell Labs, Lucent

Regarding the relationship of the field with its collegial fields of CS and IS, we find

• a few similarities with CS in the list of top institutions, but still enough differences to be
able to say that SSE is a different field from CS, and

• enough differences with the field of IS to say that they are clearly quite different fields.

(A study of the curriculum and research differences between the fields may be found in Glass
(1992, curriculum), and Glass et al. (2004, research).)

8.3.1.5 Further analysis of the study and some observations

When reading the study of Glass and Chen an objective observer would find at first a few
surprises. Prominent computer scientists and prominent institutions with high reputations in
computer science and computer engineering do not appear in the lists of top scholars or insti-
tutions. The reason is quite simple. The researchers of these institutions, although they pub-
lish in the journals of the study, do not publish with high frequency in these journals. They
tend to publish in archival journals not related to software engineering and systems engineer-
ing. They publish in the Transactions on Software Engineering and Methodologies of ACM
and the Transactions on Software Engineering of IEEE, but with much less frequency.

84 CMU/SEI-2005-TR-020

More important is the observation made by Glass and Chen in their own study. They observe,
�A few similarities with CS in the list of top institutions exist, but still enough differences to
be able to say that SSE is a different field from CS.� This is also our own observation. From
the beginning of the field of software engineering going back to its foundations, pure com-
puter scientists, even those making fundamental contributions to programming languages,
have not regarded software engineering with the same esteem accorded to other branches of
computer science. These scientists/engineers hold similar views to a large extent in those as-
pects of software engineering related to systems engineering.

Those software and systems engineers contributing in such important aspects of the field as
process development, quality, testing and measurements, are underrepresented in the higher
ranks of the professional associations. This is corroborated by the smaller numbers of Fel-
lows of the IEEE and of ACM compared with those of more mainstream branches of com-
puter science/engineering. This point is even more evident when one looks at memberships in
the National Academies. Only a handful of prominent engineers who can be regarded as
software engineers are in the National Academy of Engineering. This situation will probably
change in due course�indeed it is already changing as funding agencies and, in particular,
organizations and entities of DoD, accrue to the field of SSE the prominence it deserves. The
distinction goes beyond basic or fundamental versus applied when ascribing these attributes
to computer science and software engineering, respectively, because there are many contribu-
tions in software engineering and systems engineering that are basic and fundamental in na-
ture.

Another observation worth pointing out is that there are institutions overseas and some insti-
tutions in the U.S. that are making notable contributions in systems and software engineering,
and are thus worth scouting, but they normally would not be on the radar screen of observers
in this country, Looking at those institutions highly ranked in the study of Glass and Chen,
and excluding those that would be mentioned as such by a casual observer, it is worth sin-
gling out the following institutions:

• Korea Advanced Institute of Science and Technology

• National Chiao Tung University

• Fraunhofer IESE

• Seoul National University, Korea

• City University, Hong Kong

• Iowa State University

• National University of Singapore

• Lund University, Sweden

• National Cheng Kung University

• Osaka University

CMU/SEI-2005-TR-020 85

• Aristotle University of Thessaloniki, Greece

A sequel to this report will concentrate on these institutions and others in Glass and Chen�s
study as well as those researchers mentioned in the study.

8.3.1.6 References

Glass, Robert L. & Chen, T.Y. �An Assessment of Systems and Software Engineering Schol-
ars and Institutions (1999-2003).� Journal of Systems and Software 76 (2005): 91-97.

Glass, R.L. �A Comparative Analysis of the Topic Areas of Computer Science, Software En-
gineering and Information Systems. Journal of Systems and Software. November 1992.

Glass, R.L. �An Assessment of Systems and Software Engineering, Scholars and Institu
tions.� Journal of Systems and Software. October 1994.

Glass, R.L.; Ramesh, V.; & Vessey, I. �Research in Software Engineering: An Analysis of the
Literature. Information and Software Technology. June 1, 2002.

Glass, R.L.; Vessey, I.; & Ramesh, V. �An Analysis of Research in Computing Disciplines.�
Communications of the ACM. June 2004.

Ramesh, V.; Glass, R.L.; & Vessey, I. �Research in Computer Science: An Empirical Study.�
Journal of Systems and Software. February 2004.

Vessey, I.; Ramesh, V.; & Glass, L. �Research in Information Systems: An Empirical Study of
Diversity in the Discipline and its Journals.� Journal of Management Information Systems.
Fall 2002.

8.3.2 2005 Software Process Workshop
Observations of international conferences or workshops are a meaningful way of doing scout-
ing on what is going on in the fields of software engineering. This is particularly the case
when these conferences or workshops are not attended by a number of active members of the
Software Engineering Institute, or take place in remote places not openly accessible to mem-
bers of SEI.

One such workshop took place in the People�s Republic of China, May 25�27, 2005, with the
theme �Unifying the Software Process Spectrum� (http://www.cnsqa.com/cnsqa/jsp/html
/spw/index.jsp). The lone attendee (as a keynote speaker) from the SEI was Watts Humphrey.
Representatives from a number of institutions well known to members of the SEI attended
the workshop, either as invited speakers, as presenters of papers in the program, or as mem-
bers of the program committee. Many of these people are known to the SEI, but others are
not. Yet it is worthwhile to track their work, particularly when this work or the authors are not
ordinarily on the SEI radar screen.

86 CMU/SEI-2005-TR-020

http://www.cnsqa.com/cnsqa/jsp/html/spw/index.jsp
http://www.cnsqa.com/cnsqa/jsp/html/spw/index.jsp

The report on this workshop starts with the enumeration of the sponsors of the workshop. It
follows with the articulation of the need for more research on software process and the quest
of those attempting to create a rigorous, orderly discipline of software process engineering,
both of which the author of this report finds interesting and eloquent. It follows with a list of
participants in the workshop and the invited speakers (with titles of their presentations). This
list almost reads as a �who�s who in software engineering.� The report follows with the pro-
gram, with authors and the titles of their presentations. The program is divided into different
aspects of software process, namely process content, process tools and metrics, process man-
agement, process representation and analysis, and experience reports, and culminates with a
panel on �Directions in Software Process Research: Where Are We Now, What Should We
Do Next,� chaired by Leon Osterweil. Through the reports, links are given that may be useful
when the names or the institutions are not familiar to the reader.

This workshop attracted our attention due to the caliber of the keynote speakers, the program,
and the participation of a number of speakers from the Peoples Republic of China, who often
are not on the radar screen of observers from the Western world. The workshop was spon-
sored by The Institute of Software, Chinese Academy of Science (http://www.iscas.ac.cn
/english/index_english.htm and http://www.cnsqa.com/cnsqa/jsp/html/spw/sponsors.jsp).

Cooperating in the sponsorship was the ISCAS Lab for Internet Software Technologies
(http://www.cnsqa.com/cnsqa/ShowMainAction.do).

Participating in the sponsorship of the workshop was the well known USC Center of Soft-
ware Engineering under the direction of Barry Boehm. Members of Boehm�s group also
made presentations. (http://sunset.usc.edu/cse/index.html).

Expanding on the theme of the workshop, the call for papers and the narrative of the program
define in a nice way the nature of the workshop, very much in tune with the articulation of
those who recognize the need for more research on software process and those attempting to
create a rigorous, orderly discipline of software process engineering:

The expanding role of software and information systems in the world has focused
increasing attention upon the need for assurances that software systems can be
developed at acceptable speed and cost, on a predictable schedule, and in such a
way that resulting systems are of acceptably high quality and can be evolved
surely and rapidly as usage contexts change. This sharpened focus is creating
new challenges and opportunities for software process technology. The increas-
ing pace of software system change requires more lightweight and adaptive
processes, while the increasing mission-criticality of software systems requires
more process predictability and control, as well as more explicit attention to
business or mission values. Emergent application requirements create a need for
ambiguity-tolerance. Systems of systems and global development create needs
for scalability and multi-collaborator, multi-culture concurrent coordination.
COTS products provide powerful capabilities, but their vendor-determined evo-

CMU/SEI-2005-TR-020 87

http://www.iscas.ac.cn/english/index_english.htm
http://www.iscas.ac.cn/english/index_english.htm
http://www.cnsqa.com/cnsqa/jsp/html/spw/sponsors.jsp
http://www.cnsqa.com/cnsqa/ShowMainAction.do
http://sunset.usc.edu/cse/index.html
http://www.iscas.ac.cn/english/index_english.htmandwww.cnsqa.com/cnsqa/jsp/html/spw/sponsors.jsp
http://www.cnsqa.com/cnsqa/ShowMainAction.do
http://sunset.usc.edu/cse/index.html

lution places significant constraints on software definition, development, and
evolution processes.

The recognition of these needs has spawned a considerable amount of software
process research across a broad spectrum. Much of the research has addressed
the overall characteristics and needs of software processes, focusing on such is-
sues as process architectures, process behavioral characteristics, and how proc-
esses fit with higher level organizational systems and characteristics. We refer to
these investigations as macroprocess research. Simultaneously there has also
been considerable research directed towards the precise, complete, detailed and
unambiguous definition of software processes, focusing on such issues as detec-
tion of process flaws, and facilitation of the human-machine synergies inherent
in software processes. We refer to these investigations as microprocess research.
A major goal of this workshop was to suggest ways in which to integrate these
two complementary lines of research to create a rigorous, orderly discipline of
software process engineering. This integration could suggest, for example, how
high level process behaviors might be predicted, and modified, through lower
level analyses and optimizations. It could also explore how best to integrate ob-
jective microprocesses based on explicit knowledge with more subjective col-
laboration processes based on tacit knowledge.

This workshop was intended to provide a forum for assessing current and emerg-
ing software process capabilities with respect to the challenges, and for obtain-
ing insights into the software process research directions needed to address the
challenges and make progress toward overriding goals. It included initial pres-
entations by leading international software process researchers and users, pres-
entations of contributed papers on process challenge areas and solution ap-
proaches, tool demonstrations, and a closing panel on software process research
directions.”

Although the lists of participants in the workshop are not all the prominent people doing re-
search in software process, they almost read as a �who�s who in software process�:

• Leon J. Osterweil, Department of Computer Science, University of Massachusetts

• Prof. Dr. H. Dieter Rombach, Head of the Research Group for Software Engineering
(AGSE, http://wwwagse.informatik.uni-kl.de/) and of the Fraunhofer Institute for Ex-
perimental Software Engineering (IESE, http://www.iese.fhg.de/)

• Mary Lou Soffa, Department Chair and Professor of Computer Science

• Frances Paulisch, Siemens AG in Munich, Germany. She is responsible for the �Sie-
mens Software Initiative.�

88 CMU/SEI-2005-TR-020

http://wwwagse.informatik.uni-kl.de/
http://www.iese.fhg.de/
http://wwwagse.informatik.uni-kl.de
http://www.iese.fhg.de

• S.C. Cheung, Associate Professor of Comp ter Scienceu , Associate Director of
Cyberspace Center, Hong Kong niversity of Science and TechnologyU
(http://www.ust.hk/en/index.html)

• Jo(anne) M. Atlee, Director of Software Engineering, Associate Professor School of
Comp ter Scienceu , University of Waterloo (http://www.cs.uwaterloo.ca/)

• T.Y. Chen, Professor of Software Engineering, School of Information Technology,
Swinb rne niversity of Technologyu U (http://www.swin.edu.au/ict/)

• Anthony Finkelstein, Professor of Software Systems Engineering, Head of Department
of Computer Science, University College London
(http://www.cs.ucl.ac.uk/staff/A.Finkelstein/)

• Lori A. Clarke, Department of Computer Science, University of Massachusetts

• Betty H.C. Cheng, Professor in Computer Science and Engineering, Michigan State
University (http://www.cse.msu.edu/%7Echengb/bio.html)

• Beijun Shen, Dept. of Computer Science, East China University of Science and Tech-
nology (http://www.it rls.com/~bjshenu)

• David S. Rosenblum, Professor of Software Systems in the Department of Comp ter Sci-
ence

u
 at University College London (http://www.cs.ucl.ac.uk/). He is the coordinator of

the department�s new MSc in Software Systems Engineering and is also Director of
London Software Systems, a joint initiative of the Software Systems Gro pu at UCL and
the Distrib ted Software Engineering Gro pu u at Imperial College London, where he is
also an Honorary Professorial Research Fellow.

• Jeff Magee, Professor in Computing, Distrib ted Software Engineering Section, u
Department of Comp tingu , Imperial College (http://www-dse.doc.ic.ac.uk/)

8.3.2.1 Invited speakers (with titles of their presentations)

The Future of Software Processes
Barry Boehm
Director and Professor of Center for Software Engineering, Computer Science Department,
University of Southern California, U.S.

Software: A Paradigm for the Future
Watts S. Humphrey
Fellow of SEI, Carnegie Mellon University, U.S.

Integrated Software Process & Product Lines
H. Dieter Rombach
Professor of the Department of Computer Science at the University of Kaiserslautern, Ger-
many

CMU/SEI-2005-TR-020 89

http://www.cs.ust.hk/
http://www.cyber.ust.hk/
http://www.ust.hk/
http://www.softeng.uwaterloo.ca/
http://www.cs.uwaterloo.ca/
http://www.cs.uwaterloo.ca/
http://www.uwaterloo.ca/
http://www.it.swin.edu.au/
http://www.swin.edu.au/
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/defn.html
http://www.iturls.com/%7Ebjshen
http://www.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk/
http://www.ucl.ac.uk/
http://www.cs.ucl.ac.uk/teaching/mscsse/
http://www.cs.ucl.ac.uk/lss/
http://sse.cs.ucl.ac.uk/
http://www-dse.doc.ic.ac.uk/
http://www.doc.ic.ac.uk/
http://www-dse.doc.ic.ac.uk/
http://www.doc.ic.ac.uk/
http://www.ic.ac.uk/
http://www.ust.hk/en/index.html
http://www.cs.uwaterloo.ca
http://www.swin.edu.au/ict
http://www.cs.ucl.ac.uk/staff/A.Finkelstein
http://www.cse.msu.edu/%7Echengb/bio.html
http://www.cs.ucl.ac.uk
http://www-dse.doc.ic.ac.uk

Unifying Microprocess and Macroprocess Research
Leon J. Osterweil
Dean and Professor of the College of Natural Sciences & Mathematics, University of Massa-
chusetts Amherst, U.S.

Achieving Software Development Performance Improvement through Process Change
Ross Jeffery
Professor of the School of Computer Science and Engineering at the University of New
South Wales, Australia

90 CMU/SEI-2005-TR-020

What Beyond CMMI is Needed to Help Assure Program and Project Success?
Arthur Pyster
Senior Vice President and Director of Systems Engineering and Integration, Federal Segment,
SAIC, U.S.

Expanding the Horizons of Software Development Processes: A 3-D Integrated Methodology
Mingshu Li
Director and Professor of the Institute of Software at the Chinese Academy of Sciences,
China

Evolving Defect 'Folklore': A Cross-Study Analysis of Software Defect Behavior
Victor R. Basili
Professor of Computer Science at the University of Maryland

Rigorous Software Process for Development of Embedded Systems
Wilhelm Schäfer
Chair and Professor of the International Graduate School of Computer Science and Engineer-
ing at the University of Paderborn, Germany

Software are Processes Too
Jacky Estublier
Professor of the French National Research Center (CNRS) in Grenoble, France

8.3.2.2 Program (with names and titles of presentations)

Process Content

Aspect-Oriented Software Development and Software Process
Stanley M. Sutton Jr.
IBM T.J. Watson Research Center, Hawthorne, NY, U.S.

Process Patterns for COTS-Based Development
Ye Yang
Center for Software Engineering, University of Southern California, U.S.

A Value-Based Process for Achieving Software Dependability
Liguo Huang
Computer Science Department, University of Southern California, U.S.

S-RaP: A Concurrent, Evolutionary Software Prototyping Process
Xiping Song, Arnold Rudorfer, Beatrice Hwong, Gilberto Matos, and Christopher Nel-
son
Siemens Corporate Research Inc., U.S.

A Development Process for Building OSS-Based Applications
Huang Meng, Yang Liguang

CMU/SEI-2005-TR-020 91

Lab for Internet Software Technologies, ISCAS, China
Yang Ye
Center for Software Engineering, University of Southern California, U.S.

A Study on the Distribution and Cost Prediction of Requirements Changes in the Software
Life-Cycle
Chengying Mao, Yansheng Lu, and Xi Wang
College of Computer Science and Technology, Huazhong University of Science and Technol-
ogy, China

A Gradually Proceeded Software Architecture Design Process
Licong Tian, Li Zhang, Bosheng Zhou, and Guanqun Qian
Software Engineering Institute, University of Aeronautics and Astronautics, China

Requirements Engineering Processes Improvement: A Systematic View
Anliang Ning, Hong Hou, Qingyi Hua, Bin Yu and Kegang Hao
Institute of Software Engineering, Northwest University, China

Process Tools and Metrics

Project Management System Based on Work-Breakdown-Structure Process Model
Akira Harada, Satoshi Awane, Yuji Inoya, Osamu Ohno
Hitachi Ltd., Japan
Makoto Matsushita, Shinji Kusumoto, Katsuro Inoue
Osaka University, Japan

Evaluation of the Capability of Personal Software Process Based on Data Envelopment
Analysis
Liping Ding, Qiusong Yang, Liang Sun, Jie Tong
Laboratory for Internet Software Technologies, ISCAS, China
Yongji Wang
Laboratory for Internet Software Technologies, ISCAS, China
Key Laboratory for Computer Science, The Chinese Academy of Sciences, China

Spiral Pro: A Project Plan Generation Framework and Support Tool
Jizhe Wang
Laboratory for Internet Software Technologies, ISCAS, China
Graduate School of the Chinese Academy of Sciences, China
Steven Meyers
Center for Software Engineering, University of Southern California, U.S.
Software Process Group, U.S.

Software Testing Process Automation Based on UTP —- A Case Study
Wei Chen, Qun Ying, Yunzhi Xue, and Chen Zhao
Laboratory for Internet Software Technologies, ISCAS, China

92 CMU/SEI-2005-TR-020

Process Management

Software Process Management: Practices in China
Qing Wang and Mingshu Li
Institute of Software, Chinese Academy of Sciences, China

A Framework for Coping with Process Evolution
Brian A. Nejmeh
INSTEP Inc., U.S.
Messiah College, Grantham, Pennsylvania U.S.
William E. Riddle
Solution Deployment Affiliates, U.S.
Fraunhofer IESE, Kaiserslautern, Germany

A Process Improvement Framework and A Supporting Software Oriented to Chinese Small
Organizations
Bo Gong
BeiHang University, China
Institute of Command and Technology of Equipment, China
Xingui He
Peking University, China
Weihong Liu
Institute of Command and Technology of Equipment, China

Incremental Workflow Mining based on Document Versioning Information
Ekkart Kindler, Vladimir Rubin, Wilhelm Schäfer
Software Engineering Group, University of Paderborn, Germany

Process Representation and Analysis

Process Technology to Facilitate the Conduct of Science
Leon J. Osterweil, Alexander Wise, Lori Clarke
Department of Computer Science, University of Massachusetts, U.S.
Aaron M. Ellison, Julian L. Hadley, Emery Boose, David R. Foster
Harvard University, U.S.

M(in)BASE: An Upward-Tailorable Process Wrapper Framework for Identifying and Avoid-
ing Model Clashes
David Klappholz
Stevens Institute of Technology, U.S.
Daniel Port
University of Hawaii, U.S.

CMU/SEI-2005-TR-020 93

Process Definition Language Support for Rapid Simulation Prototyping
Mohammad S. Raunak and Leon J. Osterweil
University of Massachusetts, U.S.

Integrated Modeling of Business Value and Software Processes
Raymond Madachy
Center for Software Engineering, Department of Computer Science, University of Southern
California, U.S.
Cost Xpert Group, CA

Process Elements: Components of Software Process Architectures
Jesal Bhuta, Barry Boehm
Center for Software Engineering, Computer Science Department, University of Southern
California, U.S.
Steve Meyers
Software Process Group, U.S.

Translation of Nets within Nets in Cross-organizational Software Process Modeling
Jidong Ge, Haiyang Hu, Ping Lu, Hao Hu, and Jian Lv
State Key Laboratory for Novel Software Technology, Nanjing University, China

Process Programming to Support Medical Safety: A Case Study on Blood Transfusion
Lori A. Clarke, Yao Chen, George S. Avrunin, Bin Chen, Rachel Cobleigh, Kim Freder-
ick, Elizabeth A. Henneman, and Leon J. Osterweil
University of Massachusetts, U.S.

Experience Report

Experience in Discovering, Modeling, and Reenacting Open Source Software Development
Processes
Chris Jensen and Walt Scacchi
Institute for Software Research, University of California, Irvine, U.S.

Application of the V-Modell XT - Report from A Pilot Project
Marco Kuhrmann
Technische Universität München, Germany
Dirk Niebuhr, and Andreas Rausch
Technische Universität Kaiserslautern, Germany

Evolving an Experience Base for Software Process Research
Zhihao Chen
Center for Software Engineering, University of Southern California, U.S.
Daniel Port
University of Hawaii, U.S.

94 CMU/SEI-2005-TR-020

Yue Chen, Barry Boehm
Center for Software Engineering, University of Southern California, U.S.

Status of SPI Activities in Japanese Software - A view from JASPIC
Kouichi Sugahara
Fuji Film Software Corp., Japan
Hideto Ogasawara
TOSHIBA Corp., Japan
Teruyuki Aoyama
Fuji Xerox Corp., Japan
Tetsuya Higashi
TOSHIBA Medical Systems Corp., Japan

Automatically Analyzing Software Processes: Experience Report
Rodion M. Podorozhny
Texas State University, U.S.
Dewayne E. Perry
University of Texas, Austin, U.S.
Leon J. Osterweil
University of Massachusetts, U.S.

A Road Map for Implementing eXtreme Programming
Kim Man Lui and Keith C.C. Chan
Hong Kong Polytechnic University, HK

A Survey of CMM/CMMI Implementation in China
Zhanchun Wu
Laboratory for Internet Software Technologies, Institute of Software, The Chinese Academy
of Sciences
David Christensen
One Market Ltd. Co, New Zealand
Mingshu Li
Institute of Software, The Chinese Academy of Sciences
Key Laboratory for Computer Science, The Chinese Academy of Sciences
Qing Wang
Laboratory for Internet Software Technologies, Institute of Software, The Chinese Academy
of Sciences

Closing Panel on Directions in Software Process Research: Where Are We Now? Where
Should We Go Next?
Chair: Leon J. Osterweil
University of Massachusetts, U.S.

CMU/SEI-2005-TR-020 95

8.3.3 Agile Software Development
The Agile Software Movement attempts to address problems in software purported to involve
overly fat processes, too much paperwork, rigid adherence to plans, overly rigorous disci-
pline, bureaucratic burdens, and others. Responding to new environments, some software
engineers have posited methods to develop software quicker, cheaper, and better. These soft-
ware engineers and the methods they promulgate include Kent Beck and eXtreme Program-
ming; Martin Fowler and Refactoring; Ken Schwaber and Scrum; and Jim Highsmith and
Adaptive Software Development. More on these methods follows.

eXtreme Programming, developed by Kent Beck et al., was introduced at a conference in
June 1999 in Nancy, France. It evokes the most interest of any of the Agile methods. Its flag-
ship is the C3 project at Chrysler, which is mostly an engineering process. It embodies four
values: communication, simplicity, feedback, and courage. It promulgates 12 practices: The
Planning Game, Small Releases, Metaphor, Simple Design, Testing, Refactoring, Pair Pro-
gramming, Collective Ownership, Continuous Integration, 40-Hour Week, On-site Customer,
and Coding Standards.

Scrum was first used to describe development processes in Japan in 1987. It was first tested
in Individual Inc. in 1996 and puts the emphasis on management and control. It purportedly
is adaptive, quick, self-organizing, and has few rests�characteristics also shared by eXtreme
Programming.

Adaptive Software Development, originally called RADical Software Development, was
developed from a mainframe project in 1992 by Jim Highsmith. It was renamed Adaptive
Software Development in 1997 in a book published in 2000.

Other methods and their proponents are: Dynamic Systems Development by Arie van Benne-
kum et al.; Crystal Methods by Alistair Cockburn; Feature Driven Development by Jeff De
Luca and Peter Coad; and Lean Development by Bob Charette.

The Agile Alliance, http://www.agilealliance.com/ , was formed by 17 people who gathered
at Snowbird, Utah, in February 2001. They agreed to use the term �Agile� and called them-
selves �Agilists.� They issued the Agile Manifesto, available at http://agilemanifesto.org/.
The Manifesto reads: �We are uncovering better ways of developing software by doing it and
helping others do it. � Through this work we have come to value:

• individuals and interactions over processes and tools

• working software over comprehensive documentation

• customer collaboration over contract negotiation

• responding to change over following a plan

96 CMU/SEI-2005-TR-020

http://www.agilealliance.com/
http://agilemanifesto.org/

The Manifesto encompasses 12 principles:

• satisfy the customer through delivery of valuable software

• welcome changing requirements

• deliver working software frequently

• business people and developers work together daily

• build projects around motivated individuals

• face-to-face conversation

• working software is the primary measure of progress

• promote sustainable development

• continuous attention to technical excellence

• simplicity

• architectures, requirements, and designs emerge

• tune and adjust team behavior regularly

Agile Strategies are the following:

• On project management:
− use thin, barely sufficient process
− short, iterative cycles
− plan is a guide to the future, not the future
− adaptive, rather than predictive planning
− working software is the primary measure of progress
− informally documented requirements
− rely on the collective ability of autonomous teams as the basic problem-solving

mechanism
− real-time communication between team members

• On documentation:
− remember subsequent maintenance cost
− keep it lightweight
− self-explanatory code instead of comments
− fundamental issue is communication, not documentation
− primary goal is to develop software
− create documentation only when you need it
− update documentation only when it hurts

• On requirements:
− active stakeholder participation

CMU/SEI-2005-TR-020 97

− expect to gather requirements throughout the entire project
− use the terminology of your users
− use the simplest tools
− keep it fun

• On planning
− plan from a chaordic perspective
− view plan as a hypothesis rather than a prediction
− constant involvement by stakeholders
− expectation of change
− rough long-term plans
− detailed short-term plans
− use simple tools
− agile ≠ no plan

• On architecture:
− don�t place architects on pedestals
− architects should prepare to get their hands dirty with development
− solve tomorrow�s problem tomorrow
− evolve architecture incrementally, iteratively, allowing it to emerge over time
− just enough documentation to communicate
− architectures are proved through concrete experiments

• On design:
− reject significant effort in up-front design
− in favor of evolutionary approach
− the design changes as the program evolves
− get feedback from coding
− design emerges

• On coding and testing:
− pair programming instead of formal inspection or peer review
− testers should frequently interact with programmers and customers
− short, informal test plans
− early testing, even before coding
− continuous testing, frequent regression
− automatic testing
− diverse testers, programmers as testers

• Common themes are:
− practicing software development in a minimalist manner
− focusing on generating small, frequent releases

98 CMU/SEI-2005-TR-020

− using mostly collaborative techniques
− emphasizing communication
− advocating simplicity

8.3.4 International Conferences in Software Engineering
As stated on the Web sites for these conferences (http://www.cs.wustl.edu/icse05/Home
/index.shtml and http://www.icse-conferences.org/) ICSE is the premier software engineering
conference, providing a forum for researchers, practitioners, and educators to present and
discuss the most recent innovations, trends, experiences, and concerns in the field of software
engineering.

The proceedings of ICSE are available in the ACM Digital Library (http://portal.acm.org
/portal.cfm). Through the following link one can find information about the ICSE conference
series as well as information about the ICSE Steering Committee: http://www.icse-
conferences.org/sc/index.html. The steering committee includes a long list of prominent
software engineers, both in academe and industry, worldwide.

The following links provide access to the history of the ICSE Conference, bibliography of
ICSE papers, and the list of ICSE �Most Influential Papers�:

• History of the ICSE Conference (http://www.icse-conferences.org/sc/history.html)

• Bibliography of ICSE Papers (http://www.icse-conferences.org/sc/bib.html)

• ICSE �Most Influential Papers� (http://www.sigsoft.org/awards/mostInfPapAwd.htm)

8.3.5 Recipients and Title of Most Influential Paper
1989 Marc J. Rochkind: The Source Code Control System, NCSE-1, 1975.

1990 William A. Wulf, Ralph L. London, Mary Shaw: An Introduction to the Construction
and Verification of Alphard Programs, ICSE-2, 1976.

1991 David Parnas: Designing Software for Ease of Extension and Contraction, ICSE-3,
1978.

1992 Walter Tichy: Software Development Control Based on Module Interconnection,
ICSE-4, 1979.

1993 Mark Weiser: Program Slicing, ICSE-5, 1981.

1994 Sol Greenspan, John Mylopoulos, Alex Borgida: Capturing More World Knowledge in
the Requirements Specification, ICSE-6, 1982.

CMU/SEI-2005-TR-020 99

http://www.cs.wustl.edu/icse05/Home/index.shtml
http://www.cs.wustl.edu/icse05/Home/index.shtml
http://www.icse-conferences.org/
http://portal.acm.org/browse_dl.cfm?linked=1&part=series&idx=SERIES402&coll=portal&dl=ACM&CFID=27744130&CFTOKEN=48712950
http://portal.acm.org/portal.cfm
http://www.icse-conferences.org/sc/history.html
http://www.icse-conferences.org/sc/bib.html
http://www.acm.org/sigsoft/awards/mostInfPapAwd.htm
http://portal.acm.org/citation.cfm?id=800253.807708&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=800253.807708&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=800099.803218&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=800091.802918&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=800078.802557&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=800254.807765&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=800254.807765&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/portal.cfm
http://portal.acm.org/portal.cfm
http://www.icse-conferences.org/sc/index.html
http://www.icse-conferences.org/sc/index.html
http://www.icse-conferences.org/sc/history.html
http://www.icse-conferences.org/sc/bib.html
http://www.sigsoft.org/awards/mostInfPapAwd.htm

1995 David L. Parnas, Paul C. Clements, David M. Weiss: The Modular Structure of Com-
plex Systems, ICSE-7, 1984.

1996 Sam Redwine Jr., William Riddle: Software Technology Maturation, ICSE-8, 1985.

Lee Osterweil: Software Processes are Software Too, ICSE-9, 1987. 1997

Manny Lehman: Process Models, Process Programs, Programming Support, ICSE-9,
1987.

1998 David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi
Sherman, Aharon Shtul-Trauring: Statemate: A Working Environment for the Devel-
opment of Complex Reactive Systems, ICSE-10, 1988.

1999 Dewayne Perry: The Inscape Environment, ICSE-11, 1989.

2000 No award.

2001 Robert Balzer: Tolerating Inconsistency, ICSE-13, 1991.

2002 David S. Rosenblum: Towards a Method of Programming with Assertions, ICSE-14,
1992.

2003 Bashar Nuseibeh, Jeff Kramer, Anthony Finkelstein: Expressing the Relationships be-
tween Multiple Views in Requirements Specification, ICSE-15, 1993.

2004 Robert Allen, David Garlan: Formalizing Architectural Connection, ICSE-16, 1994.

2005 Michael Jackson, Pamela Zave: Deriving Specifications from Requirements: An Ex-
ample, ICSE-17, 1995.

An analysis and commentary on the impact of these influential papers will be the subject of a
future report.

100 CMU/SEI-2005-TR-020

http://portal.acm.org/citation.cfm?id=800054.801999&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=800054.801999&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=319568.319624&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=2848398&CFTOKEN=40327853
http://portal.acm.org/citation.cfm?id=41765.41766&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=41765.41767&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=55823.55861&dl=GUIDE&dl=ACM&type=series&idx=SERIES402&part=Proceedings&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=55823.55861&dl=GUIDE&dl=ACM&type=series&idx=SERIES402&part=Proceedings&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=74587.74588&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=256664.256748&coll=portal&dl=ACM&type=series&idx=SERIES402&part=series&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=143062.143098&dl=GUIDE&dl=ACM&type=series&idx=SERIES402&part=Proceedings&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=257572.257610&dl=GUIDE&dl=ACM&type=series&idx=SERIES402&part=Proceedings&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=257572.257610&dl=GUIDE&dl=ACM&type=series&idx=SERIES402&part=Proceedings&WantType=Proceedings&title=International%20Conference%20on%20Software%20Engineering&CFID=934114&CFTOKEN=43879943
http://portal.acm.org/citation.cfm?id=257745&dl=ACM&coll=portal
http://portal.acm.org/citation.cfm?id=225016
http://portal.acm.org/citation.cfm?id=225016

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

 December 2005
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Results of SEI Independent Research and Development
Projects and Report on Emerging Technologies and Technology
Trends

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Sagar Chaki; Rosann W. Collins; Peter Feiler; John Goodenough; Aaron Greenhouse; Jorgen Hansson;
Alan R. Hevner; John Hudak; Angel Jordan; Rick Kazman; Richard C. Linger; Mark G. Pleszkoch; Stacy
J. Prowell; Natasha Sharygina; Kurt C. Wallnau; Gwen Walton; Chuck Weinstock; & Lutz Wrage

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TR-020

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2005-020

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

117
13. ABSTRACT (MAXIMUM 200 WORDS)

Each year, the Software Engineering Institute (SEI) undertakes several Independent Research and Develop-
ment (IR&D) projects. These projects serve to (1) support feasibility studies investigating whether further work
by the SEI would be of potential benefit, and (2) support further exploratory work to determine whether there
is sufficient value in eventually funding the feasibility study work as an SEI initiative. Projects are chosen
based on their potential to mature and/or transition software engineering practices, develop information that
will help in deciding whether further work is worth funding, and set new directions for SEI work. This report
describes the IR&D projects that were conducted during fiscal year 2005 (October 2004 through September
2005). In addition, this report provides information on what the SEI has learned in its role as a technology
scout for developments over the past year in the field of software engineering.

14. SUBJECT TERMS

software engineering research and development
15. NUMBER OF PAGES

117
16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Results of SEI Independent Research and Development Projects and Report on Emerging Technologies and Technology Trends
	Introduction
	1.1 Purpose of the SEI Independent Research and Development Program
	1.2 Overview of IR&D Projects
	1.3 Purpose of Technology Scouting

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Architecture-Based Self-Adapting Systems
	2.1 Purpose
	2.2 Background
	2.3 Approach
	2.4 Collaborations
	2.5 Evaluation Criteria
	2.6 Results
	2.7 Publications and Presentations

	3 The Impact of Architecture Concurrency on Performance Engineering
	3.1 Purpose
	3.2 Background
	3.3 Approach
	3.4 Collaborators
	3.5 Evaluation Criteria
	3.6 Results
	3.7 Course and Publications
	3.8 References

	4 The Impact of Function Extraction Technology on Next-Generation Software Engineering
	4.1 Purpose
	4.2 Background
	4.3 Approach
	4.4 Collaborations
	4.5 Evaluation Criteria
	4.6 Results
	4.7 References

	5 Issues in Scalability
	5.1 Purpose
	5.2 Background
	5.3 Approach
	5.4 Collaborations
	5.5 Evaluation Criteria
	5.6 Results
	5.7 Conclusion
	5.8 References

	6 Proof-Carrying Code
	6.1 Purpose
	6.2 Background
	6.3 Approach
	6.4 Collaborations
	6.5 Evaluation Criteria
	6.6 Results
	6.7 References

	7 Verification of Evolving Software via Component Substitutability Analysis
	7.1 Introduction
	7.2 Model Checking
	7.3 The Process of Model Checking
	7.4 Current Research in Software Model Checking
	7.5 Verification of Evolving Software
	7.6 Implementation and Experimental Evaluation
	7.7 Related Work
	7.8 Conclusion
	7.9 References

	8 Emerging Technologies and Technology Trends
	8.1 Introduction
	8.2 Technology Scouting of Work at Carnegie Mellon University and Other Institutions Worldwide Relevant to SEI
	8.3 Technology Scouting in Systems and Software Engineering

